72 research outputs found

    Modelling nitrous oxide emissions from mown-grass and grain-cropping systems : Testing and sensitivity analysis of DailyDayCent using high frequency measurements

    Get PDF
    The lead author, Nimai Senapati (Post doc), was funded by the European community’s Seventh Framework programme (FP2012-2015) under grant agreement no. 262060 (ExpeER). The research leading to these results has received funding principally from the ANR (ANR-11-INBS-0001), AllEnvi, CNRS-INSU. We would like to thank the National Research Infrastructure ‘Agro-écosystèmes, Cycles Biogéochimique et Biodiversité (SOERE-ACBB http://www.soere-acbb.com/fr/) for their support in field experiment. We are deeply indebted to Christophe deBerranger, Xavier Charrier for their substantial technical assistance and Patricia Laville for her valuables suggestion regarding N2O flux estimation.Peer reviewedPostprin

    Potential yield challenges to scale-up of zero budget natural farming

    Get PDF
    We thank V. Kumar, Z. Hussain and R. Nalavade of RySS for information, support while visiting sites and discussions. Funding for this work was provided by the Newton Bhabha Virtual Centre on Nitrogen Efficiency in Whole Cropping Systems (NEWS) project no. NEC 05724, the DFID-NERC El Niño programme in project NE P004830, ‘Building Resilience in Ethiopia’s Awassa Region to Drought’ (BREAD), the ESRC NEXUS programme in project IEAS/POO2501/1, ‘Improving Organic Resource Use in Rural Ethiopia’ (IPORE), and the GCRF South Asian Nitrogen Hub (NE/S009019/1). J.Y. was supported by the Scottish Government’s Rural and Environment Research and Analysis Directorate under the current Strategic Research Programme (2016–2021): Research Deliverable 1.1.3: Soils and Greenhouse Gas Emissions. The input of P.S. contributes to the UKRI-funded projects DEVIL (NE/M021327/1), Soils-R-GRREAT (NE/P019455/1) and N-Circle (BB/N013484/1), the European Union’s Horizon 2020 Research and Innovation Programme projects CIRCASA (grant agreement no. 774378) and UNISECO (grant agreement no. 773901), and the Wellcome Trust-funded project Sustainable and Healthy Food Systems (SHEFS).Peer reviewedPostprin

    Seasonal patterns of greenhouse gas emissions from a forest-to-bog restored site in northern Scotland : Influence of microtopography and vegetation on carbon dioxide and methane dynamics

    Get PDF
    Acknowledgments: We thank the Royal Society Protection for Birds (RSPB) for permission to use Lonielist site in Forsinard and the relative stuff for assistance in the field, especially Daniela Klein. We also thank the James Hutton Institute Aberdeen for providing lab and transport facilities. We thank Rebekka Artz and Mhari Coyle (James Hutton Institute) for the provision of their unpublished data and Russell Anderson (Forest Research) and two anonymous referees for improvements to the manuscript. Funding: This research was funded by Scottish Forestry and the University of Aberdeen.Peer reviewedPublisher PD

    Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland

    Get PDF
    Acknowledgements: We thank the James Hutton Institute Aberdeen for providing laboratory and transport facilities, especially Richard Hewison, who completed the vegetation survey of the site and Graham Gaskin and Alison Wilkinson for providing assistance with field equipment. Author J Yeluripati was supported by the Scottish Government’s Strategic Research Programme (2016–2021): Research Deliverable 1.1.3: Soils and Greenhouse Gas Emissions. I also thank William Jessop (York University), who provided peat depth measurements and my dearest friends Anna Ferretto, Luka Paradiz Udovc, Douglas Wardell-Johnson, Ben Butler, Lucho Quinzo and Ben M. Taylor for offering their invaluable help with field measurements. We lastly thank Toni Clarcke for helping with statistical analysis and Michael Bell (Forest Research) for improvements to the manuscript. Funding: This research was funded by Scottish Forestry and the University of Aberdeen.Peer reviewedPostprin

    Supporting better decisions across the nexus of water, energy and food through earth observation data:Case of the Zambezi basin

    Get PDF
    The water–energy–food (WEF) nexus has been promoted in recent years as an intersectional concept designed to improve planning and regulatory decision-making across the three sectors. The production and consumption of water, energy and food resources are inextricably linked across multiple spatial scales (from the global to the local), but a common feature is competition for land which through different land management practices mediates provisioning ecosystem services. The nexus perspective seeks to understand the interlinkages and use systems-based thinking to frame management options for the present and the future. It aims to highlight advantage and minimise damaging and unsustainable outcomes through informed decisions regarding trade-offs inclusive of economic, ecological and equity considerations. Operationalizing the WEF approach is difficult because of the lack of complete data, knowledge and observability – and the nature of the challenge also depends on the scale of the investigation. Transboundary river basins are particularly challenging because whilst the basin unit defines the hydrological system this is not necessarily coincident with flows of food and energy. There are multiple national jurisdictions and geopolitical relations to consider. Land use changes have a profound influence on hydrological, agricultural, energy provisioning and regulating ecosystem services. Future policy decisions in the water, energy and food sectors could have profound effects, with different demands for land and water resources, intensifying competition for these resources in the future. In this study, we used Google Earth Engine (GEE) to analyse the land cover changes in the Zambezi river basin (1.4 million km<sup>2</sup>) from 1992 to 2015 using the European Space Agency annual global land cover dataset. Early results indicate transformative processes are underway with significant shifts from tree cover to cropland, with a 4.6 % loss in tree cover and a 16 % gain in cropland during the study period. The changes were found to be occurring mainly in the eastern (Malawi and Mozambique) and southern (Zimbabwe and southern Zambia) parts of the basin. The area under urban land uses was found to have more than doubled during the study period gearing urban centres increasingly as the foci for resource consumption. These preliminary findings are the first step in understanding the spatial and temporal interlinkages of water, energy and food by providing reliable and consistent evidence spanning the local, regional, national and whole transboundary basin scale

    Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt

    Get PDF
    We present a conceptual synthesis of the impact that agricultural activity in India can have on land-atmosphere interactions through irrigation. We illustrate a “bottom up” approach to evaluate the effects of land use change on both physical processes and human vulnerability. We compared vapor fluxes (estimated evaporation and transpiration) from a pre-agricultural and a contemporary land cover and found that mean annual vapor fluxes have increased by 17% (340 km3) with a 7% increase (117 km3) in the wet season and a 55% increase (223 km3) in the dry season. Two thirds of this increase was attributed to irrigation, with groundwater-based irrigation contributing 14% and 35% of the vapor fluxes in the wet and dry seasons, respectively. The area averaged change in latent heat flux across India was estimated to be 9 Wm−2. The largest increases occurred where both cropland and irrigated lands were the predominant contemporary land uses

    Adopting soil organic carbon management practices in soils of varying quality : Implications and perspectives in Europe

    Get PDF
    Acknowledgements We wish to thank all participants to the SmartSOIL project for their inspiring inputs and debates and for having shared their valuable expertise, contributing to the success of this project. Furthermore, we are grateful to the financial support from the 7th Framework Programme of the European Union (Call identifier: FP7-KBBE-2011-5; project number: 289694).Peer reviewedPostprin

    Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh

    Get PDF
    The work was supported by Bangabandhu Fellowship on Science and ICT project, Ministry of Science and Technology, People’s Republic of Bangladesh. We are grateful to the model developers at the Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America, for sending us the new methane version of the DayCent model.Peer reviewedPostprin

    Environmental change impacts on the C- and N-cycle of European forests: a model comparison study [Discussion paper]

    Get PDF
    Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth

    What makes an operational Farm Soil Carbon Code? Insights from a global comparison of existing soil carbon codes using a structured analytical framework

    Get PDF
    Soils have the potential to sequester and store significant amounts of carbon, contributing towards climate change mitigation. Soil carbon markets are now emerging to pay farmers for changes in land use or management that absorb carbon from the atmosphere, governed by codes that ensure additionality, permanence and non-leakage whilst protecting against unintentional reversals. This paper represents the first global comparative analysis of agricultural soil carbon codes, providing new insights into the wide range of approaches currently used to govern these emerging markets internationally. To do this, the paper first develops an analytical framework for the systematic comparison of codes, which could be applied to the analysis of codes in other land uses and habitats. This framework was then used to identify commonalities and differences in methods, projects, administration and commercialisation and associated code documents for 12 publicly available codes from the UK, France, Australia, USA and international bodies. Codes used a range of mechanisms to manage: additionality (including legal, adoption, financial viability and investment tests); uncertainty and risks around soil carbon sequestration (including minimum permanence periods, carbon buffers, contractual arrangements and/or insurance policies); leakage (including restriction of eligible practices and monitoring to subtract leakage from verified sequestration); baselines (including multi-year and variable buffers based on empirical data or models); measurement, reporting and verification methods (stipulating time intervals, methods, data sources and assessments of uncertainty); auditing; resale of carbon units; stakeholder engagement; and approaches to ensure market integrity (such as buyer checks). The paper concludes by discussing existing MRV methods and codes that could be adapted for use in the UK and evaluates the need for an over-arching standard for soil carbon codes in the UK, to which existing codes and other schemes already generating soil carbon credits could be assessed and benchmarked
    corecore