14,850 research outputs found

    Comparison of heat transfer characteristics of three cooling configurations for air-cooled turbine vanes tested in a turbojet engine

    Get PDF
    A comparison was made of the heat transfer characteristics of three air cooled vanes. The vanes incorporated cooling schemes such as impingement cooling, film cooling, and convection cooling with and without extended surfaces. A redesign study was made for two vanes to improve the cooling effectiveness. An average impingement heat transfer coefficient was calculated on the bases of experimentally determined temperatures at the leading edge and a one dimensional heat transfer calculation. This heat transfer coefficient was compared with existing impingement heat transfer correlations

    Scattering of Pruppacher-Pitter raindrops at 30 GHz

    Get PDF
    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated

    Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    Get PDF
    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior

    Transverse Bragg-reflector injection lasers

    Get PDF
    A GaAs-GaAlAs injection laser has been tested that confines light in the lateral dimension (normal to junction plane) by a multilayer Bragg reflector. In the past, light has been confined as a result of the higher-index guiding region and resulting evanescent fields

    Comparison of cooling effectiveness of turbine vanes with and without film cooling

    Get PDF
    The cooling effectiveness of three film-cooled vanes were compared to the cooling effectiveness of two non-film-cooled vanes. The comparison indicated that, for the vane configurations and test conditions examined, film cooling had an adverse effect near the suction-surface trailing edge of the vanes. Film cooling was found to be beneficial on the pressure surface of the vanes

    Crossflow effects on impingement cooling of a turbine vane

    Get PDF
    An air-cooled turbine vane was tested in a four-vane cascade. Heat transfer characteristics of the impingement cooled midchord region are reported. Experimental Nusselt numbers of six midchord locations are examined for the effect of crossflow and compared to those predicted by impingement correlations found in the literature

    Two-dimensional matrix algorithm using detrended fluctuation analysis to distinguish Burkitt and diffuse large B-cell lymphoma

    Get PDF
    Copyright © 2012 Rong-Guan Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A detrended fluctuation analysis (DFA) method is applied to image analysis. The 2-dimensional (2D) DFA algorithms is proposed for recharacterizing images of lymph sections. Due to Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), there is a significant different 5-year survival rates after multiagent chemotherapy. Therefore, distinguishing the difference between BL and DLBCL is very important. In this study, eighteen BL images were classified as group A, which have one to five cytogenetic changes. Ten BL images were classified as group B, which have more than five cytogenetic changes. Both groups A and B BLs are aggressive lymphomas, which grow very fast and require more intensive chemotherapy. Finally, ten DLBCL images were classified as group C. The short-term correlation exponent α1 values of DFA of groups A, B, and C were 0.370 ± 0.033, 0.382 ± 0.022, and 0.435 ± 0.053, respectively. It was found that α1 value of BL image was significantly lower (P < 0.05) than DLBCL. However, there is no difference between the groups A and B BLs. Hence, it can be concluded that α1 value based on DFA statistics concept can clearly distinguish BL and DLBCL image.National Science Council (NSC) of Taiwan the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (also sponsored by National Science Council)

    GENET note no. 1

    Get PDF
    The general features of the GENET system for simulating networks are described. A set of features is presented which are desirable for network simulations and which are expected to be achieved by this system. Among these features are: (1) two level network modeling; and (2) problem oriented operations. Several typical network systems are modeled in GENET framework to illustrate various of the features and to show its applicability

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    Spatial properties of entangled photon pairs generated in nonlinear layered structures

    Full text link
    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also structures efficiently generated photon pairs showing anti-bunching and anti-coalescence can be obtained. Three reasons for splitting the correlated area in photonic-band-gap structures are revealed: zig-zag movement of photons inside the structure, spatial symmetry and polarization-dependent properties. Also spectral splitting can be observed in these structures.Comment: 13 pages, 17 figure
    corecore