18,605 research outputs found
Donor hematopoietic progenitor cells in nonmyeloablated rat recipients of allogeneic bone marrow and liver grafts
Background. Although the persistence of multilineage microchimerism in recipients of long-surviving organ transplants implies engraftment of migratory pluripotent donor stem cells, the ultimate localization in the recipient of these cells has not been determined in any species. Methods. Progenitor cells were demonstrated in the bone marrow and nonparenchymal liver cells of naive rats and in Brown Norway (BN) recipients of Lewis (LEW) allografts by semiquantitative colony-forming unit in culture (CFU-C) assays. The LEW allografts of bone marrow cells (BMC) (2.5xl08), orthotopic livers, or heterotopic hearts (abdominal site) were transplanted under a 2-week course of daily tacrolimus, with additional single doses on days 20 and 27. Donor CFU-C colonies were distinguished from recipient colonies in the allografts and recipient bone marrow with a donor-specific MHC class II monoclonal antibody. The proportions of donor and recipient colonies were estimated from a standard curve created by LEW and BN bone marrow mixtures of known concentrations. Results. After the BMC infusions, 5-10% of the CFU-C in the bone marrow of BN recipients were of the LEW phenotype at 14, 30, and 60 days after transplantation. At 100 days, however, donor CFU-C could no longer be found at this site. The pattern of LEW CFU-C in the bone marrow of BN liver recipients up to 60 days was similar to that in recipients of 2.5 x 108 BMC, although the donor colonies were only 1/20 to 1/200 as numerous. This was expected, because the progenitor cells in the passenger leukocytes of a single liver are equivalent to those in 1-5x106 BMC. Using a liquid CFU-C assay, donor progenitor cells were demonstrated among the nonparenchymal cells of liver allografts up to 100 days. In contrast, after heart transplantation, donor CFU-C could not be identified in the recipient bone marrow, even at 14 days. Conclusion. Under effective immunosuppression, allogeneic hematopoietic progenitors compete effectively with host cells for initial engraftment in the bone marrow of noncytoablated recipients, but disappear from this location between 60 and 100 days after transplantation, coincident with the shift of donor leukocyte chimerism from the lymphoid to the nonlymphoid compartment that we previously have observed in this model. It is possible that the syngeneic parenchymal environment of the liver allografts constitutes a privileged site for persistent progenitor donor cells
Two Dimensional Ising Superconductivity in Gated MoS
The Zeeman effect, which is usually considered to be detrimental to
superconductivity, can surprisingly protect the superconducting states created
by gating a layered transition metal dichalcogenide. This effective Zeeman
field, which is originated from intrinsic spin orbit coupling induced by
breaking in-plane inversion symmetry, can reach nearly a hundred Tesla in
magnitude. It strongly pins the spin orientation of the electrons to the
out-of-plane directions and protects the superconductivity from being destroyed
by an in-plane external magnetic field. In magnetotransport experiments of
ionic-gate MoS transistors, where gating prepares individual
superconducting state with different carrier doping, we indeed observe a spin-
protected superconductivity by measuring an in-plane critical field
far beyond the Pauli paramagnetic limit. The
gating-enhanced is more than an order of magnitude larger
compared to the bulk superconducting phases where the effective Zeeman field is
weakened by interlayer coupling. Our study gives the first experimental
evidence of an Ising superconductor, in which spins of the pairing electrons
are strongly pinned by an effective Zeeman field
Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating
Electrically controllable magnetism, which requires the field-effect
manipulation of both charge and spin degrees of freedom, has attracted growing
interests since the emergence of spintronics. In this work, we report the
reversible electrical switching of ferromagnetic (FM) states in platinum (Pt)
thin films by introducing paramagnetic ionic liquid (PIL) as the gating media.
The paramagnetic ionic gating controls the movement of ions with magnetic
moments, which induces itinerant ferromagnetism on the surface of Pt films with
large coercivity and perpendicular anisotropy mimicking the ideal
two-dimensional Ising-type FM state. The electrical transport of the induced FM
state shows Kondo effect at low temperature suggesting spatially separated
coexistence of Kondo scattering beneath the FM interface. The tunable FM state
indicates that paramagnetic ionic gating could serve as a versatile method to
induce rich transport phenomena combining field effect and magnetism at
PIL-gated interfaces.Comment: 17 pages, 4 figure
Nature-Inspired, Computer-Assisted Optimization of Hierarchically Structured Zeolites
Zeolite catalysis is often affected by transport limitations, which significantly influence overall performance. Introducing wide pores as molecular transport highways can reduce transport limitations, control the product distribution, and mitigate effects of catalyst deactivation. Nevertheless, the importance to rationally design the meso‐ and macropore space remains underappreciated. This article reviews multiscale modelling approaches to optimize overall catalytic performance. It provides a general methodology and rules of thumb to guide catalyst synthesis with optimal pore network characteristics. Inspiration is taken from nature, such as the structure of leaves and tissues, with similar requirements and associated features. In optimal hierarchically structured zeolites, the added macro‐/mesopore volume fraction, connectivity, crystal size, and minimum wide pore size are crucial. The broad pore size distribution is secondary. No uncontrolled diffusion limitations should exist within the zeolite crystals. Surface barriers, however, can significantly affect, even dominate overall transport. Understanding their origin and ways to control them is an emergent research area. Synthesis methods to realize hierarchically structured zeolites are briefly reviewed. Significant gaps exist between laboratory synthesis methods and industrial requirements. Zeolite catalysis could benefit from computer‐assisted design of their hierarchical pore network, embracing principles used by natural transport networks for scalable efficiency, selectivity, and robustness
First Measurements of Spin-Dependent Double-Differential Cross Sections and the Gerasimov-Drell-Hearn Integrand from (3)(H)over-right-arrowe((gamma)over-right-arrow, n)pp at Incident Photon Energies of 12.8 and 14.7 MeV
The first measurement of the three-body photodisintegration of longitudinally polarized He-3 with a circularly polarized gamma-ray beam was carried out at the High Intensity gamma-ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the He-3 Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations
MPEC 2020-A99: 2020 AV2
[no abstract
- …