11 research outputs found

    Coexistence of polymerases with independent parasites as a function of the strand hopping rate <i>h</i>.

    No full text
    <p>The red line shows the length of the polymerase <i>L</i><sub><i>pol</i></sub> = 100. The two blue curves show the upper and lower limits of <i>L</i><sub><i>syn</i></sub> for which coexistence is observed. The polymerization rate for the polymerase strands is fixed at <i>k</i><sub><i>pol</i></sub> <i>=</i> 25, and the rate for the parasites varies inversely with their length.</p

    Concentrations of strand types in the full model with monomer diffusion as a function of mutation probability, with <i>M</i><sub><i>pol</i></sub> <i>= M</i><sub><i>syn</i></sub>.

    No full text
    <p>Other parameters as in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005161#pcbi.1005161.g006" target="_blank">Fig 6</a>: <i>L</i><sub><i>pol</i></sub> = 100, <i>L</i><sub><i>syn</i></sub> = 70, <i>a</i> = 0, <i>b</i> = 5000, <i>D</i> = 30, <i>v</i><sub><i>pol</i></sub> = 10.</p

    Concentration of strands as a function of mutation probability <i>M</i><sub>pol</sub> when <i>k</i><sub><i>pol</i></sub> = 15 and <i>h</i> = 0.

    No full text
    <p>Concentration of strands as a function of mutation probability <i>M</i><sub>pol</sub> when <i>k</i><sub><i>pol</i></sub> = 15 and <i>h</i> = 0.</p

    Co-operation between Polymerases and Nucleotide Synthetases in the RNA World - Fig 1

    No full text
    <p>A system of polymerases, complements and mutants when <i>k</i> = 15, and <i>h</i> = 0, with three different values of the mutation probability (a) <i>M</i><sub><i>pol</i></sub> = 0.02; (b) <i>M</i><sub><i>pol</i></sub> = 0.08; (c) <i>M</i><sub><i>pol</i></sub> = 0.13. The colour scheme is explained in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005161#pcbi.1005161.t001" target="_blank">Table 1</a>.</p

    Strand concentrations as a function of monomer diffusion rate <i>D</i> when <i>M</i><sub><i>pol</i></sub> = 0.05 and <i>M</i><sub><i>syn</i></sub> = 0.

    No full text
    <p>Other parameters: <i>L</i><sub><i>pol</i></sub> = 100, <i>L</i><sub><i>syn</i></sub> = 70, <i>a</i> = 0, <i>b</i> = 5000, <i>v</i><sub><i>pol</i></sub> = 10.</p

    Coexistence of polymerases and synthetases in the model with full monomer diffusion.

    No full text
    <p><i>L</i><sub><i>pol</i></sub> = 100, <i>L</i><sub><i>syn</i></sub> = 70, <i>a</i> = 0, <i>b</i> = 5000, <i>D</i> = 30, <i>v</i><sub><i>pol</i></sub> = 10. Three different values of mutation rate are shown (a) <i>M</i><sub><i>pol</i></sub> <i>= M</i><sub><i>syn</i></sub> = 0.02; (b) <i>M</i><sub><i>pol</i></sub> <i>= M</i><sub><i>syn</i></sub> = 0.04; (c) <i>M</i><sub><i>pol</i></sub> <i>= M</i><sub><i>syn</i></sub> = 0.065. The colour scheme is explained in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005161#pcbi.1005161.t001" target="_blank">Table 1</a>.</p

    Polymerases with non-functional synthetases that act as independent parasites.

    No full text
    <p><i>L</i><sub><i>pol</i></sub> = 100, <i>L</i><sub><i>syn</i></sub> = 50, <i>k</i><sub><i>pol</i></sub> = 25, <i>h</i> = 0, <i>M</i><sub><i>pol</i></sub> <i>=</i> 0 and <i>M</i><sub><i>syn</i></sub> = 0. The parasites coexist with the polymerases by forming bands around the fringes of the polymerase clusters. The colour scheme is explained in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005161#pcbi.1005161.t001" target="_blank">Table 1</a>.</p

    Strand concentrations as a function of monomer diffusion rate <i>D</i> when <i>M</i><sub><i>pol</i></sub> = 0.0 and <i>M</i><sub><i>syn</i></sub> = 0.05.

    No full text
    <p>Other parameters: <i>L</i><sub><i>pol</i></sub> = 100, <i>L</i><sub><i>syn</i></sub> = 70, <i>a</i> = 0, <i>b</i> = 5000, <i>v</i><sub><i>pol</i></sub> = 10.</p

    Concentration of strands as a function of strand hopping rate <i>h</i> when <i>k</i><sub><i>pol</i></sub> = 15 and <i>M</i><sub><i>pol</i></sub> = 0.1.

    No full text
    <p>Concentration of strands as a function of strand hopping rate <i>h</i> when <i>k</i><sub><i>pol</i></sub> = 15 and <i>M</i><sub><i>pol</i></sub> = 0.1.</p

    Adhesive Composite Hydrogel Patch for Sustained Transdermal Drug Delivery To Treat Atopic Dermatitis

    No full text
    Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Continuous administration of steroids often causes undesired side effects; hence, drug delivery systems with high loading capacities and sustained release profiles are required. Herein, adhesive hydrogels for sustained transdermal delivery of dexamethasone (DEX), a potent corticosteroid, have been suggested for AD treatment. The adhesive composite hydrogels comprise a double network of polyacrylamide (PAM) and polydopamine (PDA) embedded with extra-large-pore mesoporous silica nanoparticles (XL-MSNs). The intrinsic skin adhesiveness of the dopamine-derived PAM/PDA hydrogels is further enhanced by XL-MSN incorporation that contributes to the simultaneous enhancement of cohesion and adhesion of the hydrogel. The resulting adhesive hydrogels exhibit a high water content and strong adhesion to porcine skin. A sustained release of DEX is obtained when DEX is loaded within the pores of XL-MSNs in PAM/PDA hydrogels compared to the rapid release from the direct loading of DEX in hydrogels. Application of DEX-loaded MSN@PAM/PDA hydrogels on an AD mouse model led to the significant suppression of AD symptoms, including the restoration of the thickened epidermal layer, decrease in inflammatory cell infiltration in the skin, recovery of collagen deposition, and decreased levels of immunoglobulin E. XL-MSN-embedded adhesive hydrogels could be a potential platform for topical drug delivery to treat inflammatory skin diseases
    corecore