249 research outputs found

    Adaptive Neural Network Robust Control for Space Robot with Uncertainty

    Get PDF
    The trajectory tracking problems of a class of space robot manipulators with parameters and non-parameters uncertainty are considered. An adaptive robust control algorithm based on neural network is proposed by the paper. Neutral network is used to adaptive learn and compensate the unknown system for parameters uncertainties, the weight adaptive laws are designed by the paper, System stability base on Lyapunov theory is analysised to ensure the convergence of the algorithm. Non-parameters uncertainties are estimated and compensated by robust controller. It is proven that the designed controller can guarantee the asymptotic convergence of tracking error. The controller could guarantee good robust and the stability of closed-loop system. The simulation results show that the presented method is effective

    Beyond ANT and Sociomateriality: Explore Symbolic Power to Information System Adoption

    Get PDF
    IS adoption is inherently a social practice shaped by the immediate social context but capital power does not have a stronger presence in ANT and sociomateriality. The paper describes Bourdieu’s practice theory and suggests that by this lens we can better understand IS adoption (e.g., implementation of MRP II/ERP/ERP II) as symbolic capital changing power relations in an adopted organization. Such shift of power relations is viewed as accepting relation thinking mode and critical realism in IS adoption. From symbolic power perspective, character status and role prestige is ascribed to IS. Implementation of an IS are configuration of power relation designed by IS software vendors. By exploring IS as social inclusion and distinction, we review Ivy University’s Oracle ERP case beyond ANT and Social-materiality theory. We also applied symbolic capital of Bourdieu’s theory to explain“ERP adoption means find dying”by Liu Chuanzhi in Chinese Legend Company

    Adaptive Control of Space Robot Manipulators with Task Space Base on Neural Network

    Get PDF
    As are considered, the body posture is controlled and position cannot control, space manipulator system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control strategy based on neural network is put forward. Neural network on-line modeling technology is used to approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural network approximation error and external bounded disturbance are eliminated by variable structure control controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need to take the training process, globally asymptotically stable of the closed-loop system is proved based on the lyapunov theory. The simulation results show that the designed controller can achieve high control precision has the important value of engineering application

    Amplitude Prediction from Uplink to Downlink CSI against Receiver Distortion in FDD Systems

    Full text link
    In frequency division duplex (FDD) massive multiple-input multiple-output (mMIMO) systems, the reciprocity mismatch caused by receiver distortion seriously degrades the amplitude prediction performance of channel state information (CSI). To tackle this issue, from the perspective of distortion suppression and reciprocity calibration, a lightweight neural network-based amplitude prediction method is proposed in this paper. Specifically, with the receiver distortion at the base station (BS), conventional methods are employed to extract the amplitude feature of uplink CSI. Then, learning along the direction of the uplink wireless propagation channel, a dedicated and lightweight distortion-learning network (Dist-LeaNet) is designed to restrain the receiver distortion and calibrate the amplitude reciprocity between the uplink and downlink CSI. Subsequently, by cascading, a single hidden layer-based amplitude-prediction network (Amp-PreNet) is developed to accomplish amplitude prediction of downlink CSI based on the strong amplitude reciprocity. Simulation results show that, considering the receiver distortion in FDD systems, the proposed scheme effectively improves the amplitude prediction accuracy of downlink CSI while reducing the transmission and processing delay.Comment: 10 pages, 5 figure

    Deep Neural Network Representation of Density Functional Theory Hamiltonian

    Full text link
    The marriage of density functional theory (DFT) and deep learning methods has the potential to revolutionize modern research of material science. Here we study the crucial problem of representing DFT Hamiltonian for crystalline materials of arbitrary configurations via deep neural network. A general framework is proposed to deal with the infinite dimensionality and covariance transformation of DFT Hamiltonian matrix in virtue of locality and use message passing neural network together with graph representation for deep learning. Our example study on graphene-based systems demonstrates that high accuracy (∌\simmeV) and good transferability can be obtained for DFT Hamiltonian, ensuring accurate predictions of materials properties without DFT. The Deep Hamiltonian method provides a solution to the accuracy-efficiency dilemma of DFT and opens new opportunities to explore large-scale materials and physics.Comment: 5 pages, 4 figure

    Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor

    Get PDF
    Hydrodesulfurization (HDS) of thiophene, as a gasoline model oil, over an industrial Ni-Mo/Al 2O 3 catalyst was investigated in a continuous system under microwave irradiation. The HDS efficiency was much higher (5%–14%) under microwave irradiation than conventional heating. It was proved that the reaction was enhanced by both microwave thermal and non-thermal effects. Microwave selective heating caused hot spots inside the catalyst, thus improved the reaction rate. From the analysis of the non-thermal effect, the molecular collisions were significantly increased under microwave irradiation. However, instead of being reduced, the apparent activation energy increased. This may be due to the microwave treatment hindering the adsorption though upright S-bind (η 1) and enhancing the parallel adsorption (η 5), both adsorptions were considered to favor to the direct desulfurization route and the hydrogenation route respectively. Therefore, the HDS process was considered to proceed along the hydrogenation route under microwave irradiation.[Figure not available: see fulltext.]

    Analysis of vibration characteristics of rotating parallel flexible manipulator considering joint elastic constraints

    Get PDF
    The bolt joint is the key component connecting the rigid moving base body and the flexible manipulator. The dynamic characteristics of the flexible manipulator under the elastic constraint of the joint are analyzed, and the action mechanism of the elastic constraint of the bolt joint on the frequency and vibration mode is revealed. Considering the effects of line constraint and torsion constraint, the elastic constraint model of the joint is established. Based on the principle of virtual work, the boundary constraints of the joint end and the free end are established, and the analytical equation of frequency and the expression of vibration mode function are derived. The first three frequencies and vibration mode characteristics of the flexible manipulator under elastic constraints are analyzed numerically. The sensitivity method is used to analyze the effect of linear constraints and torsional constraints on the frequency, and the elastic constraint region is established to characterize the functional relationship between the binding stiffness and the natural frequency. It is found that under elastic constraints, the influence of torsional stiffness of bolt joint is mainly concentrated in the low-order modal frequency, while the linear stiffness has a great influence on each order modal frequency of the manipulator; With the decrease of elastic constraint stiffness, its influence on modal shapes gradually increases, especially on high-order modal shapes. The research results prove the internal mechanism of the influence of elastic constraints on vibration characteristics, which provide a theoretical basis for improving the dynamic characteristics of flexible manipulator
    • 

    corecore