43 research outputs found

    Rapid and Precise Molecular Nanofiltration Using Ultra-Thin-Film Membranes Derived from 6,6′-Dihydroxy-2,2′-biphenyldiamine

    Get PDF
    A key challenge in efficient molecular separation is fabricating large-scale, highly selective polymeric membranes with precise pore control at the molecular scale. Herein, a new contorted monomer 6,6′-dihydroxy-2,2′-biphenyldiamine (DHBIPDA) is introduced as a building block to generate cross-linked, ultra-thin microporous nanofilms (sub-10 nm) via interfacial polymerization, enabling rapid, and precise molecular nanofiltration. Using diacyl chloride (TPC) as the cross-linker instead of trimesoyl chloride (TMC) significantly reduces the pore sizes within the membranes and achieves a narrower pore distribution due to a semi-crystalline structure. The film structures are confirmed using comprehensive characterization techniques including wide-angle X-ray scattering (WAXS), X-ray diffraction (XRD), positron annihilation lifetime spectroscopy (PALS), CO2 adsorption analysis, and molecular-scale simulation. The DHBIPDA/TPC and DHBIPDA/TMC membranes achieve methanol permeance values of up to 16.4 and 15.1 LMH bar−1 coupled with molecular weight cutoffs (MWCOs) as low as 283 and 306 Da, respectively. The DHBIPDA/TPC membrane demonstrates both higher permeance and higher selectivity compared to its relatively disordered counterpart DHBIPDA/TMC, consistent with characterization data. The DHBIPDA-derived membrane efficiently separates dye mixtures with similar molecular weights and enables effective recycling of organometallic homogeneous catalysts, suggesting its potential for industrial applications.</p

    Podwyższone stężenia lipokaliny-2 w surowicy krwi są związane ze wskaźnikami metabolizmu glukozy i metabolizmu kostnego w przebiegu cukrzycy typu 2

    Get PDF
    Introduction: The role of lipocalin 2 (LCN2) in type 2 diabetes mellitus (T2DM) needs to be fully elucidated. Moreover, bone has been demonstrated to modulate glucose metabolism via LCN2. We thus performed this study to investigate the associations of LCN2 with indexes of glucose metabolism in T2DM. The associations of LCN2 with bone metabolism were examined concurrently. Material and methods: Total 288 Chinese Han subjects entered in this study including 146 patients with T2DM and 142 subjects with normal glucose tolerance. Insulin resistance was assessed by HOMA-IR andWstęp: Wyjaśnienie roli lipokaliny-2 (lipocalin 2; LCN2) w przebiegu cukrzycy typu 2 jest niezbędne, w szczególności, że zostało dowiedzione, iż kość moduluje metabolizm glukozy za pośrednictwem LCN2. Niniejsze badanie przeprowadzono, aby zbadać, w jaki sposób LCN2 jest powiązana ze wskaźnikami metabolizmu glukozy w przebiegu cukrzycy typu 2. Jednocześnie zbadano powiązania LCN2 z metabolizmem kostnym. Materiał i metody: W badaniu wzięło udział 288 Chińczyków Han, w tym 146 pacjentów z cukrzycą typu 2 i 142 pacjentów z prawidłową tolerancją glukozy. Insulinooporność oceniano za pomocą wskaźnika HOMA-IR, natomiast funkcję komórek beta trzustki za pomocą HOMA-β. W przypadku pacjentów z cukrzycą typu 2 oznaczano również markery obrotu kostnego, N-końcowy propeptyd prokolagenu typu I, C-końcowy usieciowany telopeptyd łańcucha alfa kolagenu typu I, gęstość mineralną kości (bone mineral density; BMD) odcinka lędźwiowego kręgosłupa i szyjki kości udowej. Wyniki: Stężenia LCN2 w surowicy krwi w przebiegu cukrzycy typu 2 były wyższe niż u osób z prawidłową tolerancją glukozy (p = 0,005). Ponadto, LCN2 była dodatnio skorelowana ze stężeniem insuliny w surowicy krwi na czczo (r = 0,262, p = 0,001), wskaźnikiem HOMA-IR (r = 0,185, p = 0,026) i HOMA-β (r = 0,306, p &lt; 0,001), odpowiednio, oraz ujemnie skorelowana z osoczowym stężeniem glukozy na czczo (r = –0,218, p = 0,006). Dodatkowo, BMD szyjki kości udowej (β = –0,176, p = 0,033), N-końcowy propeptyd prokolagenu typu I (β = 0,181, p = 0,026) oraz C-końcowy usieciowany telopeptyd łańcucha alfa kolagenu typu I (β = –0,168, p = 0,037) były niezależnymi czynnikami predykcyjnymi dla LCN2 w przebiegu cukrzycy typu 2. Wnioski: Lipokalina-2 była powiązana ze wskaźnikami metabolizmu glukozy. Ponadto, BMD oraz markery obrotu kostnego były nie­zależnymi czynnikami predykcyjnymi dla LCN2 w przebiegu cukrzycy typu 2. Można sądzić, że LCN2 może odgrywać rolę w procesie wzajemnego wpływu homeostazy kości i homeostazy glukozy

    Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage

    Get PDF
    Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes

    Polymers of Intrinsic Microporosity for aqueous organic Redox flow batteries

    No full text
    Redox flow batteries (RFBs) based on aqueous organic electrolytes are promising technologies for large-scale, safe and cost-effective electrical energy storage. The membrane separator is the key component in a RFB system to keep redox-active species separate in two half cells while allow free transport of charge-balancing ions. Delivering fast and selective ion transport is critical for battery performance yet remains a challenge for current RFB separators, owing to the difficulty in generating membranes with well-defined sub-nanometre channels to serve as efficient molecular sieves. In this thesis, a new family of ion-sieving membranes, based on Polymers of Intrinsic Microporosity (PIMs) with different backbones and integrating varied ion-conductive groups, are developed and function as efficient and stable separators in aqueous organic RFBs. PIMs are platform materials with distinct combination of properties including high microporosity, exceptional chain rigidity and good solution processibility. A range of dibenzodioxin-based PIMs with varied spirocyclic and bridged bicyclic structural units are synthesised and provide a versatile post-functionalisation to introduce ionisable amidoxime groups. These membranes demonstrate the feasibility of PIM-based membranes serving as ion-conductive and low-resistant separators in alkaline aqueous RFB systems. Further, negative-charged sulfonate groups are introduced into spirobifluorene-based PIMs which exhibit exceptional efficiency and stability for battery operation at near neutral aqueous electrolytes, outperforming identical RFB cells that use commercial benchmark Nafion® membranes. PIMs containing Tröger’s base building blocks enable the introduction of quaternary ammonium groups together with simultaneous crosslinking network, or zwitterionic groups on amine sites. The combination of polymer rigidity, high microporosity and ion-conductive functionalities of PIMs facilitates the formation of well-confined and sub-nanometre pathway, allowing fast transport of charge-balancing ions whilst unprecedented blocking redox-active species through membranes, fulfilling the function as efficient RFB separators hence achieving impressive performance in RFBs. These proof-of-concept demos using functionalised PIM membranes as efficient molecular sieves can guide the development of new generation membrane separators for a range of clean energy technology applications

    An overview of therapeutic anticancer drug monitoring based on surface enhanced (resonance) Raman spectroscopy (SE(R)RS)

    No full text
    Therapeutic drug monitoring (TDM) is important for many therapeutic regimens and has particular relevance for anticancer drugs which often have serious effects and whose optimum dosage can vary significantly between different patients. Many of the features of surface enhanced (resonance) Raman spectroscopy (SE(R)RS) suggest it should be very suitable for TDM of anticancer drugs and some initial studies which explore the potential of SE(R)RS for TDM of anticancer drugs have been published. This review brings this work together in an attempt to draw some general observations about key aspects of the approach, including the nature of the substrate used, matrix interference effects and factors governing adsorption of the target molecules onto the enhancing surface. There is now sufficient evidence to suggest that none of these pose real difficulties in the context of TDM. However, some issues, particularly the need to carry out multiplex measurements for TDM of combination therapies, have yet to be addressed
    corecore