186 research outputs found

    Evaluating quasilocal energy and solving optimal embedding equation at null infinity

    Full text link
    We study the limit of quasilocal energy defined in [7] and [8] for a family of spacelike 2-surfaces approaching null infinity of an asymptotically flat spacetime. It is shown that Lorentzian symmetry is recovered and an energy-momentum 4-vector is obtained. In particular, the result is consistent with the Bondi-Sachs energy-momentum at a retarded time. The quasilocal mass in [7] and [8] is defined by minimizing quasilocal energy among admissible isometric embeddings and observers. The solvability of the Euler-Lagrange equation for this variational problem is also discussed in both the asymptotically flat and asymptotically null cases. Assuming analyticity, the equation can be solved and the solution is locally minimizing in all orders. In particular, this produces an optimal reference hypersurface in the Minkowski space for the spatial or null exterior region of an asymptotically flat spacetime.Comment: 22 page

    Measurements of 12C(→γ,pp) photon asymmetries for Eγ= 200–450 MeV

    Get PDF
    The 12C (→γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the difference in azimuthal angles of the two ejected protons increased the magnitude of the observed asymmetries. At low missing energies the Σ data exhibit a strong angular dependence, similar to deuteron photodisintegration

    Setting the Standards: Examining Research Productivity Among Academic Urologists in the USA and Canada in 2019.

    Get PDF
    BACKGROUND: Research productivity among academic urologists is strongly encouraged, but little data are available on productivity metrics within the field. OBJECTIVE: To provide the first comprehensive survey of research productivity among academic urologists in the USA and Canada. DESIGN, SETTING, AND PARTICIPANTS: Using the Accreditation Council for Graduate Medical Education, the Canadian Resident Matching Service, and individual program websites, all active accredited urology faculties were identified. For each individual, we collected data on American Urological Association section, title, gender, fellowship training, Scopus H-index, and citations. Comprehensive searches were completed during March-May 2019. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Descriptive statistics for demographic comparisons were performed using analysis of variance for continuous variables and chi-square test for categorical variables. Multivariable logistic regressions were used to identify the predictors of H-index greater than the median. RESULTS AND LIMITATIONS: A total of 2214 academic urology faculties (2015 in USA and 199 in Canada) were identified. The median and mean H-indices for the entire cohort of physicians were 11 and 16.1, respectively. On multivariable analysis, physicians in the North Central and Western Sections (vs mid-Atlantic), who were fellowship trained (vs no fellowship training), and of higher academic rank (professor and associate professor vs clinical instructor) were more likely to have H-index values greater than the median. Additionally, female physicians (vs male) were more likely to have H-index values less than the median. CONCLUSIONS: This study represents the first comprehensive assessment of research productivity metrics among academic urologists. These represent key benchmarks for trainees considering careers in academics and for practicing physicians gauging their own productivity in relation to their peers. PATIENT SUMMARY: In this study, we provide the first comprehensive assessment of research productivity among academic urologists in the USA and Canada. Our results help provide key benchmarks for trainees considering careers in academics and for practicing physicians gauging their own productivity in relation to peers

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications

    Get PDF
    Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications. However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • …
    corecore