5 research outputs found

    The multifunctional process of resonance scattering and generation of oscillations by nonlinear layered structures

    Get PDF
    The paper focuses on the development of a mathematical model, an effective algorithm and a self-consistent numerical analysis of the multifunctional properties of resonant scattering and generation of oscillations by nonlinear, cubically polarizable layered structures. The multifunctionality of such layered media is caused by the nonlinear mechanism between interacting oscillations—the incident oscillations (exciting the nonlinear layer from the upper and lower half-spaces) as well as the scattered and generated oscillations at the frequencies of excitation/ scattering and generation. The study of the resonance properties of scattering and generation of oscillations by a nonlinear structure with a controllable permittivity in dependence on the variation of the intensities of the components of the exciting wave package is of particular interest. In the present paper, we extend our former results, and furthermore we analyze the realizability of multifunctional properties of nonlinear electromagnetic objects with a controllable permittivity. The results of our investigations (i) demonstrate the possibility to control the scattering and generation properties of the nonlinear structure via the intensity of the incident field, (ii) indicate the possibility of increasing the multifunctionality of electronic devices, of designing frequency multipliers, and other electrodynamic devices containing nonlinear dielectrics with controllable permittivity

    Energy characteristics of a nonlinear layer at resonant frequencies of wave scattering and generation

    Get PDF
    This work presents a mathematical model, a computational scheme and experimental results describing the electrodynamic characteristics of a nonmagnetic, isotropic, E-polarized, nonlinear layered dielectric object with a cubically polarizable medium. The nonlinear object is irradiated by a quasi-homogeneous field, where the incident field constitutes of a packet of phase-synchronized plane oscillations. In the case under consideration the excitation may consist both of a highly intense electromagnetic field at a basic (fundamental) frequency, which results in the generation of the third harmonic, as well as of weakly intense fields at multiples of the basic frequency which produce no harmonics, but only have an influencing effect on the processes of wave radiation. The investigations were carried out within the setting of a coupled system approach at resonant excitation frequencies determined by the eigenvalues of the induced eigenvalue problems. A verification of the energy balance law is carried out. By means of estimations for the conditionalities of the occuring matrices, the level of degeneration of the induced non-self-adjoint spectral problems as well as the sensitivity of the coupled system of nonlinear boundary value problems with respect to computational errors are verified
    corecore