31 research outputs found

    Integral equations requiring small numbers of Krylov-subspace iterations for two-dimensional smooth penetrable scattering problems

    Get PDF
    This paper presents a class of boundary integral equations for the solution of problems of electromagnetic and acoustic scattering by two-dimensional homogeneous penetrable scatterers with smooth boundaries. The new integral equations, which, as is established in this paper, are uniquely solvable Fredholm equations of the second kind, result from representations of fields as combinations of single and double layer potentials acting on appropriately chosen regularizing operators. As demonstrated in this text by means of a variety of numerical examples (that resulted from a high-order Nyström computational implementation of the new equations), these “regularized combined equations” can give rise to important reductions in computational costs, for a given accuracy, over those resulting from previous iterative boundary integral equation solvers for transmission problems

    Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback : propagation failure and control mechanisms

    Get PDF
    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions
    corecore