123 research outputs found

    Numerical Analysis of Stress-Strain State of Orthotropic Plates in the Form of Arbitrary Convex Quadrangle

    Get PDF
    A numerical and analytical approach to solving problems of the stress-strain state of quadrangular orthotropic plates of complex shape has been proposed. Two-dimensional boundary value problem was solved using spline collocation and discrete orthogonalization methods after applying the appropriate domain transform. The influence of geometric shape of plate in different cases of boundary conditions on the displacement and stress fields is considered according to the refined theory. The results were compared with available data from other authors

    Perovskite-related oxide materials for oxygen-permeable electrochemical membrans

    Get PDF
    This brief review is focused on the studies of mixed ionic-electronic conductors on the basis of lanthanum gallate doped with transition metal cations in the В sublattice. The substitution of gallium with iron, cobalt or nickel results in greater electronic conductivity, simultaneously keeping high level of the oxy-gen ionic transport. In particular, La0 90Sr0 10Ga0 65Ni0 20Mg0 1503d perovskite exhib-its attractive oxygen permeability, which is quite similar to that of La2Ni04- and (La,Sr)Co03-based phases The combination of appropriate transport and thermomechanical properties with sufficiently high thermodynamic stability en-ables to use Ni- or Fe-substituted LaGa03-based mixed conductors for the mem-brane electrocatalytic reactors for partial oxidation of light hydrocarbons

    Oxygen-deficient perovskite-related (Nd0.4Sr0.6)2Ni0.8M0.2O4-δ as oxygen electrode materials for SOFC/SOEC

    Get PDF
    Perovskite-related Ln2NiO4+δ (Ln = La, Pr, Nd) nickelates with layered Ruddlesden-Popper combine redox stability with noticeable oxygen stoichiometry changes, yielding enhanced mixed transport and electrocatalytic properties. These unique features are promising for applications as oxygen electrodes with good electrochemical performance in reversible SOFC/SOEC (solid oxide fuel/electrolysis cell) systems. To date, most efforts were focused on oxygen-hyperstoichiometric Ln2NiO4+δ-based phases, whereas nickelates with oxygen-deficient lattice remain poorly explored. Recent studies demonstrated that the highest electrical conductivity in (Ln2-xSrx)2NiO4±δ series at elevated temperatures is observed for the compositions containing ~ 60 at.% of strontium in A sublattice [1,2]. The present work was focused on the characterization of (Nd0.4Sr0.6)2Ni0.8M0.2O4-δ (M = Ni, Co, Fe) nickelates for the possible use as materials for reversible oxygen electrodes. The ceramic materials were prepared by Pechini method with repeated annealings at 650-1200°C and sintered at 1250-1300°C for 5 h under oxygen atmosphere. Variable-temperature XRD studies confirmed that all studied compositions retain tetragonal K2NiF4-type structure in the temperature range 25-900°C. The results of thermogravimetric analysis showed that the prepared nickelates has oxygen-deficient lattice under oxidizing conditions at temperatures above 700°C. Partial substitution of nickel by cobalt or iron results in a decrease of p-type electronic conductivity and the concentration of oxygen vacancies in the lattice (Fig.1), but also suppresses dimensional changes associated with microcracking effects (due to anisotropic thermal expansion of tetragonal lattice). Electrochemical performance of porous (Nd0.4Sr0.6)2Ni0.8M0.2O4-δ electrodes in contact with Ce0.9Gd0.1O2-δ solid electrolyte was evaluated at 600- 800°C employing electrochemical impedance spectroscopy and steady-state polarization (anodic and cathodic) measurements.publishe

    Oxygen-deficient Nd0.8Sr1.2Ni0.8M0.2O4-δ (M = Ni, Co, Fe) nickelates as oxygen electrode materials for SOFC/SOEC

    Get PDF
    Ruddlesden-Popper Nd0.8Sr1.2Ni0.8M0.2O4±δ (M = Ni, Co, Fe) nickelates have been characterized as prospective oxygen electrode materials for solid electrolyte cells. XRD studies showed that these oxides retain tetragonal K2NiF4-type structure in air until at least 900°C. Average thermal expansion coefficients of Nd0.8Sr1.2Ni0.8M0.2O4±δ calculated from the structural data are in the range 14.5-15.8 ppm/K. TGA studies revealed that these nickelates are oxygen-deficient in air at temperature above 700°C but tends to oxygen stoichiometry or minor excess on cooling. Incorporation of cobalt or iron into nickel sublattice of Nd0.8Sr1.2NiO4-δ reduces oxygen deficiency and electrical conductivity. Electrochemical impedance spectroscopy studies of symmetrical cells showed that porous Nd0.8Sr1.2Ni0.8M0.2O4-δ electrodes applied onto Ce0.9Gd0.1O2-δ electrolyte exhibit quite similar performance, with lowest values of polarization resistance (0.8 Ohm×cm2 at 800°C) observed for M = Ni. The polarization resistance can be further decreased (down to 0.04 Ohm×cm2 at 800°C for M = Ni) by surface modification with PrOx.publishe

    Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution

    Get PDF
    In order to identify the effects of Pr additions on thermoelectric properties of strontium titanate, crystal structure, electrical and thermal conductivity, and Seebeck coefficient of Sr1-xPrxTiO3 (x = 0.02-0.30) materials were studied at 400 < T < 1180 K under highly reducing atmosphere. The mechanism of electronic transport was found to be similar up to 10% of praseodymium content, where generation of the charge carriers upon substitution resulted in significant increase of the electrical conductivity, moderate decrease in Seebeck coefficient, and general improvement of the power factor. Formation of point defects in the course of substitution led to suppression of the lattice thermal conductivity, whilst the contribution from electronic component was increasing with carrier concentration. Possible formation of layered structures and growing distortion of the perovskite lattice resulted in relatively low thermoelectric performance for Sr0.80Pr0.20TiO3 and Sr0.70Pr0.30TiO3. The maximum dimensionless figure of merit was observed for Sr0.90Pr0.10TiO3 and amounted to similar to 0.23 at 670K and similar to 0.34 at 1170 K, close to the values, obtained in similar conditions for the best bulk thermoelectrics, based on rare-earth substituted SrTiO3. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790307

    Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells

    Get PDF
    Ruddlesden-Popper La2-xGdxNiO4+δ (x = 0–0.4) nickelates were synthesized by glycerol-nitrate combustion technique and explored as potential oxygen electrode materials for solid oxide fuel/electrolysis cells. Similar to the parent La2NiO4+δ, the metastability of RP-type n = 1 structure limits the applicability of La2-xGdxNiO4+δ to temperatures below 900 °C. These solid solutions are mixed conductors with predominantly p-type electronic conductivity that exceeds 50 S/cm at 500–800 °C in air. Substitution by gadolinium does not change the overstoichiometric oxygen content in air but has a negative impact on the mobility of interstitial oxygen, most likely, due to steric effects associated with the lattice shrinkage on doping. The electrochemical activity of bilayer electrodes comprising functional La2-xGdxNiO4+δ and current collecting LaNi0.6Fe0.4O3-δ + 3 wt% CuO layers in contact with Ce0.8Gd0.2O1.9 electrolyte was studied in air at 550–850 °C. Analysis of electrochemical impedance spectroscopy data employing the ALS (Adler-Lane-Steele) model revealed the limiting role of oxygen-ionic conductivity of functional La2-xGdxNiO4+δ materials in overall electrode performance. © 2021 Hydrogen Energy Publications LLCCOMPETE2020IHTE UB RASFundação para a Ciência e a Tecnologia, FCTRussian Foundation for Basic Research, РФФИ, (20-03-00151, POCI-01-0145-FEDER-032295)Ministério da Ciência, Tecnologia e Ensino Superior, MCTES, (SFRH/BD/138773/2018, UIDB/50011/2020, UIDP/50011/2020)Government Council on Grants, Russian FederationSynthesis of the materials, XRD, BET and SEM study were performed using the equipment of the Shared Access Centre Composition of Compounds, IHTE UB RAS, with the support from the Government of the Russian Federation, Agreement No. 02.A03.21.0006 (Act 211). The electrochemical studies were supported financially by the Russian Foundation for Basic Research (RFBR), grant No. 20-03-00151. K.Z., D.B. and A.Y. gratefully acknowledge financial support by the project CARBOSTEAM (POCI-01-0145-FEDER-032295) funded by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through FCT/MCTES , and by project CICECO - Aveiro Institute of Materials ( UIDB/50011/2020 & UIDP/50011/2020 ) financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. K.Z. acknowledges PhD scholarship by the FCT ( SFRH/BD/138773/2018 )

    Design of Materials for Solid Oxide Fuel Cells, Permselective Membranes, and Catalysts for Biofuel Transformation into Syngas and Hydrogen Based on Fundamental Studies of Their Real Structure, Transport Properties, and Surface Reactivity

    Full text link
    Advances in design of materials for solid oxide fuel cells, oxygen and hydrogen separation membranes, and catalysts for biofuel conversion into syngas and hydrogen are reviewed. Application of new efficient techniques of material synthesis and characterization of their atomic-scale structure, transport properties, and reactivity allowed to develop new types of efficient cathodes and anodes for solid oxide fuel cells, asymmetric supported oxygen, and hydrogen separation membranes with high permeability and structured catalysts with nanocomposite-active components demonstrating high performance and stability to coking in steam/autothermal reforming of biofuels. © 2021 Elsevier B.V.This work was supported by the АААА-А21-121011390007-7 budget project of the Boreskov Institute of catalysis. A.A.Y. gratefully acknowledges financial support within the project CICECO — Aveiro Institute of Materials ( UIDB/50011/2020 and UIDP/50011/2020 ) financed by national funds through the FCT/MCTES and when appropriate cofinanced by FEDER under the PT2020 Partnership Agreement
    corecore