145 research outputs found
Evolution of particle-scale dynamics in an aging clay suspension
Multispeckle x-ray photon correlation spectroscopy was employed to
characterize the slow dynamics of a colloidal suspension formed by
highly-charged, nanometer-sized disks. At scattering wave vectors
corresponding to interparticle length scales, the dynamic structure factor
follows a form ], where
1.5. The characteristic relaxation time increases with the sample age
approximately as and decreases with
approximately as . Such a compressed exponential decay with
relaxation time that varies inversely with is consistent with recent models
that describe the dynamics in disordered elastic media in terms of strain from
random, local structural rearrangements. The amplitude of the measured decay in
varies with in a manner that implies caged particle motion at
short times. The decrease in the range of this motion and an increase in
suspension conductivity with increasing indicate a growth in the
interparticle repulsion as the mechanism for internal stress development
implied by the models.Comment: 4 pages, includes 4 postscript figures; accepted for publication in
Phys Rev Let
Investigations on pests, diseases and present early warning system of apple orchards in Isparta, Turkey
As a result of three year surveys performed in the apple orchards in Isparta region, 19 pest species belonging to 4 orders were determined and it was found that the main pest was codling moth. Most of the predators and parasitoids were effective against aphids and they were mostly found in the orchards where selective pesticides were used. Apple scab and powdery mildew were the most common and important diseases. Biology of codling moth and apple scab in the region were investigated. By using the obtained data, proper application times were given and some recommendations regarding integrated pest management program in apple orchards, were summarized
Frustrated 3-Dimensional Quantum Spin Liquid in CuHpCl
Inelastic neutron scattering measurements are reported for the quantum
antiferromagnetic material Cu_2(C_5H_12N_2)_2Cl_4 (CuHpCl). The magnetic
excitation spectrum forms a band extending from 0.9 meV to 1.4 meV. The
spectrum contains two modes that disperse throughout the a-c plane of the
monoclinic unit cell with less dispersion along the unique b-axis. Simple
arguments based on the measured dispersion relations and the crystal structure
show that a spin ladder model is inappropriate for describing CuHpCl. Instead,
it is proposed that hydrogen bond mediated exchange interactions between the
bi-nuclear molecular units yield a three-dimensional interacting spin system
with a recurrent triangular motif similar to the Shastry-Sutherland Model
(SSM). Model independent analysis based on the first moment sum rule shows that
at least four distinct spin pairs are strongly correlated and that two of
these, including the dimer bond of the corresponding SSM, are magnetically
frustrated. These results show that CuHpCl should be classified as a
frustration induced three dimensional quantum spin liquid.Comment: 13 pages, 17 figures (Color) ReSubmitted to Phys. Rev. B 9/21/2001
resubmission has new content email comments to [email protected] or
[email protected]
Simultaneous determination of atorvastatin and ezetimibe from combined pharmaceutical products by micellar electrokinetic capillary chromatography
Abstract A rapid and sensitive micellar electrokinetic capillary chromatography method with UV photodiode-array detection was developed for the simultaneous determination of atorvastatin and ezetimibe in fixed dose drug combination. Experimental conditions such as buffer concentration and pH, surfactant concentration, system temperature, applied voltage, injection parameters were optimized in order to improve the efficiency of the separation. The best results were obtained when using fused silica capillary (48 cm length X 50 µm ID) and 25 mM borate buffer electrolyte at pH 9.3 containing 25 mM SDS, + 30 kV applied voltage, 20 ºC system temperature. The separation was achieved in approximately 2 minutes, with a resolution of 7.02, the order of migration being atorvastatin followed by ezetimibe. The analytical performance of the method was verified with regard to linearity, precision, robustness and the limit of detection and quantification were calculated
Recommended from our members
Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor.
The CRISPR-Cas9 system has facilitated the genetic modification of various model organisms and cell lines. The outcomes of any CRISPR-Cas9 assay should be investigated to ensure/improve the precision of genome engineering. In this study, carbon nanotube-modified disposable pencil graphite electrodes (CNT/PGEs) were used to develop a label-free electrochemical nanogenosensor for the detection of point mutations generated in the genome by using the CRISPR-Cas9 system. Carbodiimide chemistry was used to immobilize the 5'-aminohexyl-linked inosine-substituted probe on the surface of the sensor. After hybridization between the target sequence and probe at the sensor surface, guanine oxidation signals were monitored using differential pulse voltammetry (DPV). Optimization of the sensitivity of the nanogenoassay resulted in a lower detection limit of 213.7 nM. The nanogenosensor was highly specific for the detection of the precisely edited DNA sequence. This method allows for a rapid and easy investigation of the products of CRISPR-based gene editing and can be further developed to an array system for multiplex detection of different-gene editing outcomes
Chromatin accessibility reveals insights into androgen receptor activation and transcriptional specificity
Abstract Background Epigenetic mechanisms such as chromatin accessibility impact transcription factor binding to DNA and transcriptional specificity. The androgen receptor (AR), a master regulator of the male phenotype and prostate cancer pathogenesis, acts primarily through ligand-activated transcription of target genes. Although several determinants of AR transcriptional specificity have been elucidated, our understanding of the interplay between chromatin accessibility and AR function remains incomplete. Results We used deep sequencing to assess chromatin structure via DNase I hypersensitivity and mRNA abundance, and paired these datasets with three independent AR ChIP-seq datasets. Our analysis revealed qualitative and quantitative differences in chromatin accessibility that corresponded to both AR binding and an enrichment of motifs for potential collaborating factors, one of which was identified as SP1. These quantitative differences were significantly associated with AR-regulated mRNA transcription across the genome. Base-pair resolution of the DNase I cleavage profile revealed three distinct footprinting patterns associated with the AR-DNA interaction, suggesting multiple modes of AR interaction with the genome. Conclusions In contrast with other DNA-binding factors, AR binding to the genome does not only target regions that are accessible to DNase I cleavage prior to hormone induction. AR binding is invariably associated with an increase in chromatin accessibility and, consequently, changes in gene expression. Furthermore, we present the first in vivo evidence that a significant fraction of AR binds only to half of the full AR DNA motif. These findings indicate a dynamic quantitative relationship between chromatin structure and AR-DNA binding that impacts AR transcriptional specificity
Structure of nanoparticles embedded in micellar polycrystals
We investigate by scattering techniques the structure of water-based soft
composite materials comprising a crystal made of Pluronic block-copolymer
micelles arranged in a face-centered cubic lattice and a small amount (at most
2% by volume) of silica nanoparticles, of size comparable to that of the
micelles. The copolymer is thermosensitive: it is hydrophilic and fully
dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into
micelles at room temperature, where the block-copolymer is amphiphilic. We use
contrast matching small-angle neuron scattering experiments to probe
independently the structure of the nanoparticles and that of the polymer. We
find that the nanoparticles do not perturb the crystalline order. In addition,
a structure peak is measured for the silica nanoparticles dispersed in the
polycrystalline samples. This implies that the samples are spatially
heterogeneous and comprise, without macroscopic phase separation, silica-poor
and silica-rich regions. We show that the nanoparticle concentration in the
silica-rich regions is about tenfold the average concentration. These regions
are grain boundaries between crystallites, where nanoparticles concentrate, as
shown by static light scattering and by light microscopy imaging of the
samples. We show that the temperature rate at which the sample is prepared
strongly influence the segregation of the nanoparticles in the
grain-boundaries.Comment: accepted for publication in Langmui
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing
The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.National Institutes of Health (U.S.) (Grant R01 GM52339)National Institutes of Health (U.S.) (Pre-Doctoral Training Grant GM007287)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051
- …