562 research outputs found

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat.

    Get PDF
    The complete form of androgen insensitivity is an inherited X-linked syndrome in which genetic males fail to undergo masculinization in utero due to defective functioning of the androgen receptor (AR). The molecular basis of androgen insensitivity was investigated in the testicular feminized (Tfm) rat with this syndrome. AR mRNA size and amount, as well as nuclear AR protein revealed by immunocytochemistry, suggested normal expression of the AR gene in the Tfm rat. Sequence analysis of the AR coding region from Tfm and wild-type littermate male rats revealed a single transition mutation, guanine to adenine, within exon E, changing arginine 734 to glutamine within the steroid-binding domain of the AR. This arginine is highly conserved among the family of nuclear receptors and may be part of a phosphorylation recognition site. A recreated mutant AR (Arg734----Gln) expressed in COS cells had only 10-15% of the androgen-binding capacity of wild-type AR; the reduced androgen-binding capacity was similar to that of AR in tissue extracts of the Tfm rat. Stimulation of transcriptional activity by the recreated mutant AR was reduced relative to wild-type AR in cotransfection assays in CV1 cells using as reporter plasmid the mouse mammary tumor virus promoter linked to the chloramphenicol acetyltransferase gene. Thus, arginine 734 appears essential for normal AR function both in androgen binding and transcriptional activation. Absence of these functions results in androgen insensitivity and lack of male sexual development

    Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

    Full text link
    We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.Comment: 60 pages, 36 figures. The second part of this work can be found at arXiv:1804.0258

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    1919: Abilene Christian College Bible Lectures - Full Text

    Get PDF
    Please note: There are pages missing from this book because of a misprint. These missing pages do not remove any information from the book. Uploaded by Jackson Hage

    A feasibility study of a theory-based intervention to improve appropriate polypharmacy for older people in primary care

    Get PDF
    Background: A general practitioner (GP)-targeted intervention aimed at improving the prescribing of appropriate polypharmacy for older people was previously developed using a systematic, theory-based approach based on the UK Medical Research Council’s complex intervention framework. The primary intervention component comprised a video demonstration of a GP prescribing appropriate polypharmacy during a consultation with an older patient. The video was delivered to GPs online and included feedback emphasising the positive outcomes of performing the behaviour. As a complementary intervention component, patients were invited to scheduled medication review consultations with GPs. This study aimed to test the feasibility of the intervention and study procedures (recruitment, data collection). Methods: GPs from two general practices were given access to the video, and reception staff scheduled consultations with older patients receiving polypharmacy (≥4 medicines). Primary feasibility study outcomes were the usability and acceptability of the intervention to GPs. Feedback was collected from GP and patient participants using structured questionnaires. Clinical data were also extracted from recruited patients’ medical records (baseline and 1 month post-consultation). The feasibility of applying validated assessment of prescribing appropriateness (STOPP/ START criteria, Medication Appropriateness Index) and medication regimen complexity (Medication Regimen Complexity Index) to these data was investigated. Data analysis was descriptive, providing an overview of participants’ feedback and clinical assessment findings. Results: Four GPs and ten patients were recruited across two practices. The intervention was considered usable and acceptable by GPs. Some reservations were expressed by GPs as to whether the video truly reflected resource and time pressures encountered in the general practice working environment. Patient feedback on the scheduled consultations was positive. Patients welcomed the opportunity to have their medications reviewed. Due to the short time to follow-up and a lack of detailed clinical information in patient records, it was not feasible to detect any prescribing changes or to apply the assessment tools to patients’ clinical data. Conclusion: The findings will help to further refine the intervention and study procedures (including time to follow-up) which will be tested in a randomised pilot study that will inform the design of a definitive trial to evaluate the intervention’s effectiveness

    Alterations of tumor suppressor gene p16(INK4a )in pancreatic ductal carcinoma

    Get PDF
    BACKGROUND: Cell cycle inhibitor and tumor suppressor gene p16 / MTS-1 has been reported to be altered in a variety of human tumors. The purpose of the study was to evaluate primary pancreatic ductal adenocarcinomas for potentially inactivating p16 alterations. METHODS: We investigated the status of p16 gene by polymerase chain reaction (PCR), nonradioisotopic single strand conformation polymorphism (SSCP), DNA sequencing and hypermethylation analysis in 25 primary resected ductal adenocarcinomas. In addition, we investigated p16 protein expression in these cases by immunohistochemistry (IHC) using a monoclonal antibody clone (MS-887-PO). RESULTS: Out of the 25 samples analyzed and compared to normal pancreatic control tissues, the overall frequency of p16 alterations was 80% (20/25). Aberrant promoter methylation was the most common mechanism of gene inactivation present in 52% (13/25) cases, followed by coding sequence mutations in 16% (4/25) cases and presumably homozygous deletion in 12% (3/25) cases. These genetic alterations correlated well with p16 protein expression as complete loss of p16 protein was found in 18 of 25 tumors (72%). CONCLUSION: These findings confirm that loss of p16 function could be involved in pancreatic cancer and may explain at least in part the aggressive behaviour of this tumor type

    SN 2021fxy: Mid-Ultraviolet Flux Suppression is a Common Feature of Type Ia Supernovae

    Full text link
    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intra-night rises during the early light curve. Early BVB-V colours show SN 2021fxy is the first "shallow-silicon" (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blue-shifted mid-UV spectral features and strong high-velocity Ca II features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.Comment: 26 pages, 19 figures, 9 tables; submitted to MNRAS, posted after receiving referee comment
    corecore