330 research outputs found

    Shear stress activation of nitric oxide synthase and increased NO levels in human red blood cells

    Get PDF
    Since the discovery of nitric oxide (NO) as a vasoactive molecule, red blood cells (RBC) have been considered to participate in NO-mediated control of the circulation. The classical role attributed to RBC was scavenging of NO, thereby impacting the local bioavailability of this important regulator of vascular tone^1^. RBC have been shown to be a source of NO, primarily via its transport bound to haemoglobin^2, 3^. Under specific conditions, haemoglobin plays an active role in converting NO derivatives (e.g., nitrite) to NO^4, 5^, with this NO originating from RBC being an effective modulator of vascular smooth muscle tone^6^. Interestingly, RBC contain a NO synthase (NOS) protein^7^, can actively synthesize NO using L-arginine as a substrate^8^, and can export NO under appropriate conditions^8, 9^. It has been previously hypothesized that RBC NOS may be activated by shear forces acting on the cell^10^, and we have recently shown that RBC NOS phosphorylation can be enhanced by subjecting RBC in suspension to shearing forces^9^: NO concentration in the suspending medium was increased subsequent to flow of RBC suspensions through five [mu]m pores^11^. We have now directly demonstrated increased RBC NOS activity and intracellular NO levels in immobilized RBC exposed to well-defined fluid shear stress. Immunostaining for serine 1177 phosphorylation and the NO-sensitive fluorescent probe diaminofluorescein were employed. Our results suggest that RBC deformation in constricted vessels may increase NO levels and favor vasodilation, thereby providing an important role for RBC in regulating the circulation

    Graphics processing unit accelerated computation of digital holograms

    Get PDF
    Cataloged from PDF version of article.An approximation for fast digital hologram generation is implemented on a central processing unit (CPU), a graphics processing unit (GPU), and a multi-GPU computational platform. The computational performance of the method on each platform is measured and compared. The computational speed on the GPU platform is much faster than on a CPU, and the algorithm could be further accelerated on a multi-GPU platform. In addition, the accuracy of the algorithm for single-and double-precision arithmetic is evaluated. The quality of the reconstruction from the algorithm using single-precision arithmetic is comparable with the quality from the double-precision arithmetic, and thus the implementation using single-precision arithmetic on a multi-GPU platform can be used for holographic video displays. (C) 2009 Optical Society of America

    Digital Holographic Three-Dimensional Video Displays

    Get PDF
    Cataloged from PDF version of article.Holography aims to record and regenerate volume filling light fields to reproduce ghost-like 3-D images that are optically indistinguishable from their physical 3-D originals. Digital holographic video displays are pixelated devices on which digital holograms can be written at video rates. Spatial light modulators (SLMs) are used for such purposes in practice; even though it is desirable to have SLMs that can modulate both the phase and amplitude of the incident light at each pixel, usually amplitude-only or phase-only SLMs are available. Many laboratories have reported working prototypes using different designs. Size and resolution of the SLMs are quite demanding for satisfactory 3-D reconstructions. Space–bandwidth product (SBP) seems like a good metric for quality analysis. Even though moderate SBP is satisfactory for a stationary observer with no lateral or rotational motion, the required SBP quickly increases when such motion is allowed. Multi-SLM designs, especially over curved surfaces, relieve high bandwidth requirements, and therefore, are strong candidates for futuristic holographic video displays. Holograms are quite robust to noise and quantization. It is demonstrated that either laser or light-emitting diode (LED) illumination is feasible. Current research momentum is increasing with many exciting and encouraging results

    Circular holographic video display system

    Get PDF
    Cataloged from PDF version of article.A circular holographic video display system reconstructs holographic video. Phase-only spatial light modulators are tiled in a circular configuration in order to increase the field of view. A beam-splitter is used to align the active area of the SLMs side by side without any gap. With the help of this configuration observers can see 3D ghost-like image floating in space and can move and rotate around the object. The 3D reconstructions can be observed binocularly. Experimental results are satisfactory. © 2011 Optical Society of Americ

    Real-time phase-only color holographic video display system using LED illumination

    Get PDF
    Cataloged from PDF version of article.A real-time full-color phase-only holographic display system generates holograms of 3D objects. The system includes a 3D object formed by voxels, an internet-based transmission capability that transmits the object information to the server, a real-time hologram generation unit, and a holographic display unit with incoherent illumination. The server calculates three phase holograms for RGB components using multiple GPUs. The resultant phase holograms are saved into an RGB bitmap image and loaded to the phase-only spatial light modulators (SLMs). SLMs are illuminated uniformly by LEDs, and reconstructed waves are aligned and overlapped by using high precision optics and stages. Experimental results are satisfactory. © 2009 Optical Society of America

    A Preliminary Technique for the Isolation and Culture of Brown Trout (Salmo trutta macrostigma, Dumeril, 1858) Spermatogonial Stem Cell

    Get PDF
    This study was aimed to find a practical technique for isolation and culture spermatogonial stem cells from male brown trout (Salmo trutta macrostigma). Twelve wild juvenile male were obtained from Kılıç Trout Fish Farm (Kahramanmaraş, Turkey). The juveniles were taken alive to the aquaria unit and stored in a 1000-liter capacity fiberglass tank.  In order to identify the best size, age and testis structure of S.t. macrostigma for spermatogonial stem cell isolation and culture. Morphological and histological testis conditions were assessed. Fish were anesthetized with 0.04% 2-phenoxethanol. The surface of the fish was sterilized with 70% ethanol. Twelve fish were divided into two groups for enzyme digestion, and each group was divided into two replicates (three fish per replicate). Testis tissue of group one were digested by 0.25% trypsin- EDTA, and testis tissues of group two were digested by 0.05% trypsin-EDTA. At the end of the trial, first, the best age, size and weight of the male fish for spermatogonial stem cell isolation and culture were identified as 5+ month old, 12.13±1.5 cm, 19, 25±7.05 g respectively. Then, the highest spermatogonial stem cells were measured in the stage one and two of the testes. Finally, isolation and culture conditions were optimized for male S.t. macrostigma. Spermatogonial stem cell isolation and culture techniques were defined for fish in order to be used in surrogate reproduction technologies and gene transfer systems

    A Kinetic Model for Chelating Extraction of Metals from Spent Hydrodesulphurization Catalyst by Complexing Agent

    Get PDF
    In this present paper, chelating extraction of metals from spent hydrodesulphurization catalyst was carried out using ethylene diamine tetraacetic acid as complexing agent. Mo, Ni and Co metals were precipitated in ammonium molybdate, nickel dimethylglyoxime and cobalt hydroxide forms at pH:2, pH:6 and pH:10, respectively. The highest metal extraction yields (90.22% Mo, 96.71% Co, 95.31% Ni and 19.98% Al) were achieved under optimum process conditions. The activation energy values (Ea) of Co, Mo and Ni were calculated as 14.36 kJ/mol, 16.85 kJ/mol and 15.93 kJ/mol, respectively. It was determined that leaching kinetics fitted to the pseudo-first homogenous model and the chelating process was controlled by diffusion mechanism. In the light of the kinetic data, the kinetic equation including the process parameters was obtained as follows: ln(1-x)=1.217×10-4[(CA)1.068(D)-0.929(K/S)-0.850(R)0.185exp(-6462.6/T)]t. The results provided a new approach both for reducing the solid waste load of the petrochemical industry and for efficient recovery of metals from the spent hydrodesulphurization catalyst using EDTA. © 2020, The Indian Institute of Metals - IIM

    'ACOUSTO-OPTIC SENSING FOR SAFE MRI PROCEDURES'

    Get PDF
    In this work, a novel sensor platform is developed for safer and more effective magnetic resonance imaging (MRI). This is achieved by tracking interventional devices, such as guidewires and catheters during interventional MRI procedures, and by measuring the radio frequency (RF) field to assess RF safety of patients with implants, such as pacemakers, during diagnostic MRI. The sensor is based on an acousto-optic modulator coupled with a miniature antenna. This structure is realized on an optical fiber which is immune to the RF field and eliminates the need for conducting lines. The acousto-optic modulator consists of a piezo-electric transducer and a fiber Bragg grating (FBG). The piezoelectric transducer is electrically connected to the miniature antenna and mechanically coupled to the FBG. Local RF signal received by the miniature antenna is converted to acoustic waves by the piezoelectric transducer. Acoustic waves change the grating geometry on the FBG, thus the reflected light from the FBG is modulated. For diagnostic imaging, short dipole antennas are used for sensing the local electric field, which is the primary cause of RF induced heating. For tracking purposes, small loop antennas are used for capturing local MRI signal which contains the location information. In this thesis, a comprehensive model for the acousto-optic modulator is developed and validated through sensitivity and linearity tests. Prototype RF field sensors are built and characterized: sensitivity of 1.36mV/nT and 98 μV/V/m with minimum detectable field strength of 8.2pT/√Hz and 2.7V/m/√Hz and dynamic range of 117dB/√Hz at 23MHz are achieved with 4mm single loop and 8mm short dipole antennas, respectively. These figures are competitive with commercial sensors with much larger form factors. Catheter tracking capability of the sensor under MRI is demonstrated in-vivo in swine in a 0.55T scanner using an 8F catheter in addition to phantom studies under 0.55T and 1.5T clinical MRI systems.Ph.D

    Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold

    Full text link
    When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called "neural collapse" phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer's classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon for normalized features. Based on an unconstrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddles with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization.Comment: The first two authors contributed to this work equally; 38 pages, 13 figures. Accepted at NeurIPS'2

    Randomized Histogram Matching: A Simple Augmentation for Unsupervised Domain Adaptation in Overhead Imagery

    Full text link
    Modern deep neural networks (DNNs) are highly accurate on many recognition tasks for overhead (e.g., satellite) imagery. However, visual domain shifts (e.g., statistical changes due to geography, sensor, or atmospheric conditions) remain a challenge, causing the accuracy of DNNs to degrade substantially and unpredictably when testing on new sets of imagery. In this work, we model domain shifts caused by variations in imaging hardware, lighting, and other conditions as non-linear pixel-wise transformations, and we perform a systematic study indicating that modern DNNs can become largely robust to these types of transformations, if provided with appropriate training data augmentation. In general, however, we do not know the transformation between two sets of imagery. To overcome this, we propose a fast real-time unsupervised training augmentation technique, termed randomized histogram matching (RHM). We conduct experiments with two large benchmark datasets for building segmentation and find that despite its simplicity, RHM consistently yields similar or superior performance compared to state-of-the-art unsupervised domain adaptation approaches, while being significantly simpler and more computationally efficient. RHM also offers substantially better performance than other comparably simple approaches that are widely used for overhead imagery.Comment: Includes a main paper (10 pages). This paper is currently undergoing peer revie
    corecore