58 research outputs found

    Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes

    Get PDF
    A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton

    Characterization and gene expression patterns analysis implies BSK family genes respond to salinity stress in cotton

    Get PDF
    Identification, evolution, and expression patterns of BSK (BR signaling kinase) family genes revealed that BSKs participated in the response of cotton to abiotic stress and maintained the growth of cotton in extreme environment. The steroidal hormone brassinosteroids (BR) play important roles in different plant biological processes. This study focused on BSK which were downstream regulatory element of BR, in order to help to decipher the functions of BSKs genes from cotton on growth development and responses to abiotic stresses and lean the evolutionary relationship of cotton BSKs. BSKs are a class of plant-specific receptor-like cytoplasmic kinases involved in BR signal transduction. In this study, bioinformatics methods were used to identify the cotton BSKs gene family at the cotton genome level, and the gene structure, promoter elements, protein structure and properties, gene expression patterns and candidate interacting proteins were analyzed. In the present study, a total of 152 BSKs were identified by a genome-wide search in four cotton species and other 11 plant species, and phylogenetic analysis revealed three evolutionary clades. It was identified that BSKs contain typical PKc and TPR domains, the N-terminus is composed of extended chains and helical structures. Cotton BSKs genes show different expression patterns in different tissues and organs. The gene promoter contains numerous cis-acting elements induced by hormones and abiotic stress, the hormone ABA and Cold-inducing related elements have the highest count, indicating that cotton BSK genes may be regulated by various hormones at different growth stages and involved in the response regulation of cotton to various stresses. The expression analysis of BSKs in cotton showed that the expression levels of GhBSK06, GhBSK10, GhBSK21 and GhBSK24 were significantly increased with salt-inducing. This study is helpful to analyze the function of cotton BSKs genes in growth and development and in response to stress

    Research on the Model and Algorithm for Multimodal Distribution of Emergency Supplies after Earthquake in the Perspective of Fairness

    No full text
    After the earthquake, it is important to ensure the emergency supplies are provided in time. However, not only the timeliness, but also the fairness from different perspectives should be considered. Therefore, we use a multilevel location-routing problem (LPR) to study the fairness of distribution for emergency supplies after earthquake. By comprehensively considering the time window constraints, the partial road damage and dynamic recovery in emergency logistics network, the stochastic driving time of the vehicle, and the mixed load of a variety of emergency materials, we have developed a multiobjective model for the LRP in postearthquake multimodal and fair delivery of multivariety emergency supplies with a limited period. The goal of this model is to minimize the total time in delivering emergency supplies and to minimize the maximum waiting time for emergency supplies to reach demand points. A hybrid heuristic algorithm is designed to solve the model. The example shows that this algorithm has a high efficiency and can effectively realize the supply of emergency supplies after the earthquake within the specified period. This method might be particularly suitable for the emergency rescue scenarios where the victims of the earthquake are vulnerable to mood swings and the emergency supplies need to be fairly distributed

    Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system

    Get PDF
    Developing a green, intelligent, and efficient power system is an important way for the shipping industry to respond to increasingly stringent emission regulations, and to achieve improvements in energy conservation and efficiency. In this study, a two-phase energy efficiency optimisation method is proposed for reducing energy consumption. The method comprises a combination of speed optimisation and energy management. On the demand side, the minimum accumulated power consumption required by the propeller is set as the objective function for the speed optimisation model, whereas on the supply side, the lowest cost of energy consumed by the hybrid power system is set as the objective function for the energy management model. An inland parallel hybrid electric powered bulk carrier is selected for a case study of the two-phase energy efficiency optimisation method. The optimisation results are compared with the energy consumption data of a bulk carrier under normal working conditions. The results show that the proposed method can reduce the energy consumption by 2.60% and 9.86% in the westbound and eastbound voyages, respectively. Accordingly, this study can provide methodological support for inland hybrid-powered ships aiming to achieve intelligent energy efficiency management

    Research on Projection Filtering Method Based on Projection Symmetric Interval and Its Application in Underwater Navigation

    No full text
    For non-linear systems (NLSs), the state estimation problem is an essential and important problem. This paper deals with the nonlinear state estimation problems in nonlinear and non-Gaussian systems. Recently, the Bayesian filter designer based on the Bayesian principle has been widely applied to the state estimation problem in NLSs. However, we assume that the state estimation models are nonlinear and non-Gaussian, applying traditional, typical nonlinear filtering methods, and there is no precise result for the system state estimation problem. Therefore, the larger the estimation error, the lower the estimation accuracy. To perfect the imperfections, a projection filtering method (PFM) based on the Bayesian estimation approach is applied to estimate the state. First, this paper constructs its projection symmetric interval to select the basis function. Second, the prior probability density of NLSs can be projected into the basis function space, and the prior probability density solution can be solved by using the Fokker–Planck Equation (FPE). According to the Bayes formula, the proposed estimator utilizes the basis function in projected space to iteratively calculate the posterior probability density; thus, it avoids calculating the partial differential equation. By taking two illustrative examples, it is also compared with the traditional UKF and PF algorithm, and the numerical experiment results show the feasibility and effectiveness of the novel nonlinear state estimation filter algorithm

    The Comparative Survey of Coordinated Regulation of Steroidogenic Pathway in Japanese Flounder (Paralichthys olivaceus) and Chinese Tongue Sole (Cynoglossus semilaevis)

    No full text
    Steroidogenesis controls the conversion of cholesterol into steroid hormones through the complex cascade reaction of various enzymes, which play essential roles in sexual differentiation and gonadal development in vertebrates, including teleosts. Japanese flounder (Paralichthys olivaceus) and Chinese tongue sole (Cynoglossus semilaevis) are important marine cultured fishes in China and have remarkable sexual dimorphism with bigger females and sex reversal scenarios from female to neo-male. Several steroidogenic genes have been analyzed individually in the two species, but there is a lack of information on the coordinated interaction of steroidogenic gene regulation. Therefore, in this study, through genomic and transcriptomic analysis, 39 and 42 steroidogenic genes were systematically characterized in P. olivaceus and C. semilaevis genomes, respectively. Phylogenetic and synteny analysis suggested a teleost specific genome duplication origin for cyp19a1a/cyp19a1b, hsd17b12a/hsd17b12b, ara/arb and esr2a/esr2b but not for star/star2 and cyp17a1/cyp17a2. Comparative transcriptome analysis revealed conserved expression patterns for steroidogenic genes in P. olivaceus and C. smilaevis gonads; star/star2, cyp11a/cyp11c, cyp17a1/cyp17a2, cyp21a, hsd3b1, hsd11b and hsd20b were strongly expressed in testis, while cyp19a1a and hsd17b genes were highly expressed in ovaries. Only a few genes were differentially expressed between male and neo-male testis of both P. olivaceus and C. semilaevis, and even fewer genes were differentially regulated in the brains of both species. Network analysis indicated that cyp11c, cyp17a1 and hsd3b1 actively interacted with other steroidogenic genes in P. olivaceus and C. semilaevis, and may play a more sophisticated role in the steroid hormone biosynthesis cascade. The coordinated interaction of steroidogenic genes provided comprehensive insights into steroidogenic pathway regulation with a global biological impact, as well as sexual development in teleost species

    Methane Retrieval from Hyperspectral Infrared Atmospheric Sounder on FY3D

    No full text
    This study utilized an infrared spotlight Hyperspectral infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) mounted on FY3D cloud products from the National Satellite Meteorological Center of China to obtain methane profile information. Methane inversion channels near 7.7 μm were selected based on the different distribution of methane weighting functions across different seasons and latitudes, and the selected retrieval channels had a great sensitivity to methane but not to other parameters. The optimization method was employed to retrieve methane profiles using these channels. The ozone profiles, temperature, and water vapor of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis data (ERA5) were applied to the retrieval process. After validating the methane profile concentrations retrieved by HIRAS, the following conclusions were drawn: (1) compared with Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flight data, the average correlation coefficient, relative difference, and root mean square error were 0.73, 0.0491, and 18.9 ppbv, respectively, with lower relative differences and root mean square errors in low-latitude regions than in mid-latitude regions. (2) The methane profiles retrieved from May 2019 to September 2021 showed an average error within 60 ppbv compared with the Fourier transform infrared spectrometer (FTIR) station observations of the Infrared Working Group (IRWG) of the Network for the Detection of Atmospheric Composition Change (NDACC). The errors between the a priori and retrieved values, as well as between the retrieved and smoothed values, were larger by around 400–500 hPa. Apart from Toronto and Alzomoni, which had larger peak values in autumn and spring respectively, the mean column averaging kernels typically has a larger peak in summer
    • …
    corecore