801 research outputs found

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Gestational diabetes mellitus and retinal microvasculature.

    Get PDF
    BACKGROUND: Small-vessel dysfunction may be an important consequence of chronic hyperglycemia. We examined the association between gestational diabetes mellitus (GDM), a state of transient hyperglycemia during pregnancy, and retinal microvascular changes in pregnant women at 26-28 weeks of pregnancy. METHODS: A total of 1136 pregnant women with singleton pregnancies were recruited during their first trimester at two major Singapore maternity hospitals in an on-going birth cohort study. Participants underwent an oral glucose tolerance test and retinal imaging at 26-28 weeks gestation (n = 542). We used the 1999 World Health Organization (WHO) criteria to define GDM: ≥7.0 mmol/L for fasting glucose and/or ≥7.8 mmol/L for 2-h post-glucose. Retinal microvasculature was measured using computer software (Singapore I Vessel Analyzer, SIVA version 3.0, Singapore Eye Research Institute, Singapore) from the retinal photographs. RESULTS: In a multiple linear regression model adjusting for age, ethnicity and maternal education, mothers with GDM had narrower arteriolar caliber (-1.6 μm; 95% Confidence Interval [CI]: -3.1 μm, -0.2 μm), reduced arteriolar fractal dimension (-0.01 Df; 95% CI: -0.02 Df, -0.001 Df;), and larger arteriolar branching angle (1.8°; 95% CI: 0.3°, 3.3°) than mothers without GDM. After further adjusting for traditional risks of GDM, arteriolar branching angle remained significantly larger in mothers with GDM than those without GDM (2.0°; 95% CI: 0.5°, 3.6°). CONCLUSIONS: GDM was associated with a series of retinal arteriolar abnormalities, including narrower caliber, reduced fractal dimension and larger branching angle, suggesting that transient hyperglycemia during pregnancy may cause small-vessel dysfunction

    Surface Roughness of Commercial Composites after Different Polishing Protocols: An Analysis with Atomic Force Microscopy

    Get PDF
    Polishing may increase the surface roughness of composites, with a possible effect on bacterial growth and material properties. This preliminary in vitro study evaluates the effect of three different polishing systems (PoGo polishers, Enhance, Venus Supra) on six direct resin composites (Gradia Direct, Venus, Venus Diamond, Enamel Plus HFO, Tetric Evoceram, Filtek Supreme XT)

    Transmission electron microscopy characterization of fluorescently labelled amyloid β 1-40 and α-synuclein aggregates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluorescent tags, including small organic molecules and fluorescent proteins, enable the localization of protein molecules in biomedical research experiments. However, the use of these labels may interfere with the formation of larger-scale protein structures such as amyloid aggregates. Therefore, we investigate the effects of some commonly used fluorescent tags on the morphologies of fibrils grown from the Alzheimer's disease-associated peptide Amyloid β 1-40 (Aβ40) and the Parkinson's disease-associated protein α-synuclein (αS).</p> <p>Results</p> <p>Using transmission electron microscopy (TEM), we verify that N-terminal labeling of Aβ40 with AMCA, TAMRA, and Hilyte-Fluor 488 tags does not prevent the formation of protofibrils and amyloid fibrils of various widths. We also measure the two-photon action cross-section of Aβ40 labelled with Hilyte Fluor 488 and demonstrate that this tag is suitable for use with two-photon fluorescence techniques. Similarly, we find that Alexa Fluor 488 labelling of αS variant proteins near either the N or C terminus (position 9 or 130) does not interfere with the formation of amyloid and other types of αS fibrils. We also present TEM images of fibrils grown from αS C-terminally labelled with enhanced green fluorescent protein (EGFP). Near neutral pH, two types of αS-EGFP fibrils are observed via TEM, while denaturation of the EGFP tag leads to the formation of additional species.</p> <p>Conclusions</p> <p>We demonstrate that several small extrinsic fluorescent tags are compatible with studies of amyloid protein aggregation. However, although fibrils can be grown from αS labelled with EGFP, the conformation of the fluorescent protein tag affects the observed aggregate morphologies. Thus, our results should assist researchers with label selection and optimization of solution conditions for aggregation studies involving fluorescence techniques.</p

    Murine Pancreatic Adenocarcinoma Reduces Ikaros Expression and Disrupts T Cell Homeostasis

    Get PDF
    Background Maintenance of T cell immune homeostasis is critical for adequate anti-tumor immunity. The transcription factor Ikaros is essential for lymphocyte development including T cells. Alterations in Ikaros expression occur in blood malignancies in humans and mice. In this study, we investigated the role of Ikaros in regulating T cell immune balance in pancreatic cancer mouse models. Methodology and Principal Findings Using our Panc02 tumor-bearing (TB) mouse model, western blot analysis revealed a reduction in Ikaros proteins while qRT-PCR showed no differences in Ikaros mRNA levels in TB splenocytes compared to control. Treatment of naïve splenocytes with the proteasomal inhibitor, MG132, stabilized Ikaros expression and prevented Ikaros downregulation by Panc02 cells, in vitro. Western blot analyses showed a reduction in protein phosphatase 1 (PP1) and protein kinase CK2 expression in TB splenocytes while CK2 activity was increased. Immunofluorescence microscopy revealed altered punctate staining of Ikaros in TB splenocytes. Flow cytometry revealed a significant decrease in effector CD4+ and CD8+ T cell percentages but increased CD4+CD25+ regulatory T cells in TB splenocytes. Similar alterations in T cell percentages, as well as reduced Ikaros and CK2 but not PP1 expression, were observed in a transgenic, triple mutant (TrM) pancreatic cancer model. Ikaros expression was also reduced in enriched TB CD3+ T cells. MG132 treatment of naïve CD3+ T cells stabilized Ikaros expression in the presence of Panc02 cells. Western blots showed reduced PP1 and CK2 expression in TB CD3+ T cells. Conclusions/Significance The results of this study suggest that the pancreatic tumor microenvironment may cause proteasomal degradation of Ikaros, possibly via dysregulation of PP1 and CK2 expression and activity, respectively. This loss of Ikaros expression may contribute to an imbalance in T cell percentages. Ikaros may potentially be a therapeutic target to restore T cell homeostasis in pancreatic cancer hosts, which may be critical for effective anti-tumor immunity

    Network Analysis of Oyster Transcriptome Revealed a Cascade of Cellular Responses during Recovery after Heat Shock

    Get PDF
    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes

    Risk factors for myocardial infarction among low socioeconomic status South Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As longevity increases, cases of myocardial infarction (MI) are likely to be more. Cardiovascular disease (CVD) is a major global health problem reaching epidemic proportions in the Indian subcontinent, also among low socio-economic status (SES) and thin individuals.</p> <p>Objectives</p> <p>The present study was undertaken to elicit risk factors for MI among low SES Southern Indians and to find out its association with body mass index (BMI).</p> <p>Materials and methods</p> <p>A case-control study of patients with MI matched against healthy control subjects was carried out in a tertiary care teaching hospital. Standard methods were followed to elicit risk factors and BMI. Chi-square and Fishers exact test for categorical versus categorical, to show relationship with risk factors were analyzed.</p> <p>Results</p> <p>A total of 949 patients (male (M) = 692 and post menopausal female (F) = 257) and 611 age and sex matched healthy controls were included. In our study, BMI was below 23 in 48.2% of patients and below 21 in 22.5%. The risk of developing MI was significantly more in males (odds ratio (OR) = 3.3, 95% confidence interval (C.I.) = 2.69-4.13), among females with post-menopausal duration (PMD) of more than or equal to 3 years (OR = 9.27, 95% C.I. = 6.36-13.50) and in those with BMI less than 23 with one or other risk factors (P = 0.002, OR = 1.38, 95% C.I. = 1.13-1.70).</p> <p>Conclusion</p> <p>BMI cannot be considered as a lone independent risk factor, as the study population had low BMI but had one or more modifiable risk factors. It would be advisable to keep BMI at least 21 kg/m<sup>2 </sup>for screening program. Health education on life style modification and programs to diagnose and control diabetes and hypertension have to be initiated at community level in order to reduce the occurrence.</p

    Kinetic regulation of multi-ligand binding proteins

    Get PDF
    Background: Second messengers, such as calcium, regulate the activity of multisite binding proteins in a concentration-dependent manner. For example, calcium binding has been shown to induce conformational transitions in the calcium-dependent protein calmodulin, under steady state conditions. However, intracellular concentrations of these second messengers are often subject to rapid change. The mechanisms underlying dynamic ligand-dependent regulation of multisite proteins require further elucidation. Results: In this study, a computational analysis of multisite protein kinetics in response to rapid changes in ligand concentrations is presented. Two major physiological scenarios are investigated: i) Ligand concentration is abundant and the ligand-multisite protein binding does not affect free ligand concentration, ii) Ligand concentration is of the same order of magnitude as the interacting multisite protein concentration and does not change. Therefore, buffering effects significantly influence the amounts of free ligands. For each of these scenarios the influence of the number of binding sites, the temporal effects on intermediate apo- and fully saturated conformations and the multisite regulatory effects on target proteins are investigated. Conclusions: The developed models allow for a novel and accurate interpretation of concentration and pressure jump-dependent kinetic experiments. The presented model makes predictions for the temporal distribution of multisite protein conformations in complex with variable numbers of ligands. Furthermore, it derives the characteristic time and the dynamics for the kinetic responses elicited by a ligand concentration change as a function of ligand concentration and the number of ligand binding sites. Effector proteins regulated by multisite ligand binding are shown to depend on ligand concentration in a highly nonlinear fashion

    Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization

    Get PDF
    Background: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA. Results: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26–28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific. Conclusions: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data
    corecore