270 research outputs found

    The productions of the top-pions and top-Higgs associated with the charm quark at the hadron colliders

    Get PDF
    In the topcolor-assistant technicolor (TC2) model, the typical physical particles, top-pions and top-Higgs, are predicted and the existence of these particles could be regarded as the robust evidence of the model. These particles are accessible at the Tevatron and LHC, and furthermore the flavor-changing(FC) feature of the TC2 model can provide us a unique chance to probe them. In this paper, we study some interesting FC production processes of top-pions and top-Higgs at the Tevatron and LHC, i.e., cΠtc\Pi_{t}^{-} and cΠt0(ht0)c\Pi_{t}^{0}(h_{t}^{0}) productions. We find that the light charged top-pions are not favorable by the Tevatron experiments and the Tevatron has a little capability to probe neutral top-pion and top-Higgs via these FC production processes. At the LHC, however, the cross section can reach the level of 1010010\sim 100 pb for cΠtc\Pi_t^- production and 10100 10\sim 100 fb for cΠt0(ht0)c\Pi_t^0(h_t^0) production. So one can expect that enough signals could be produced at the LHC experiments. Furthermore, the SM background should be clean due to the FC feature of the processes and the FC decay modes Πtbcˉ,Πt0(ht0)tcˉ\Pi_t^-\to b\bar{c}, \Pi_t^0(h_t^0)\to t\bar{c} can provide us the typical signal to detect the top-pions and top-Higgs. Therefore, it is hopeful to find the signal of top-pions and top-Higgs with the running of the LHC via these FC processes.Comment: 12 pages, 6 figure

    Identifying topological edge states in 2D optical lattices using light scattering

    Full text link
    We recently proposed in a Letter [Physical Review Letters 108 255303] a novel scheme to detect topological edge states in an optical lattice, based on a generalization of Bragg spectroscopy. The scope of the present article is to provide a more detailed and pedagogical description of the system - the Hofstadter optical lattice - and probing method. We first show the existence of topological edge states, in an ultra-cold gas trapped in a 2D optical lattice and subjected to a synthetic magnetic field. The remarkable robustness of the edge states is verified for a variety of external confining potentials. Then, we describe a specific laser probe, made from two lasers in Laguerre-Gaussian modes, which captures unambiguous signatures of these edge states. In particular, the resulting Bragg spectra provide the dispersion relation of the edge states, establishing their chiral nature. In order to make the Bragg signal experimentally detectable, we introduce a "shelving method", which simultaneously transfers angular momentum and changes the internal atomic state. This scheme allows to directly visualize the selected edge states on a dark background, offering an instructive view on topological insulating phases, not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases". Extended version of arXiv:1203.124

    A population of hypercompact HII regions identified from young HII regions

    Get PDF
    CONTEXT: The derived physical parameters for young HII\tiny{II} regions are normally determined assuming the emission region to be optically-thin. However, this is unlikely to hold for young HII\tiny{II} regions such as Hyper-compact HII\tiny{II} (HC HII\tiny{II}) and Ultra-compact HII\tiny{II} (UC HII\tiny{II}) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. AIMS: Two primary goals are (1) determining physical properties from radio SEDs and finding potential HC HII\tiny{II} regions; (2) using these physical properties to investigate their evolution. METHODS: We used Karl G. Jansky Very Large Array (VLA) to make observations of X-band and K-band with angular-resolutions of ~ 1:7′′ and ~ 0:7′′, respectively, toward 114 HII\tiny{II} regions with rising-spectra α(5GHz1.4GHz)>0α{5GHz\choose 1.4GHz} > 0. We complement our observations with VLA archival data and construct SEDs between 1-26 GHz and model them assuming an ionisation-bounded HII\tiny{II} region with uniform density. RESULTS: The sample has a mean electron density of ne_e = 1.6 x 104^4 cm3^{-3}, diameter diam = 0.14 pc, and emission measure EM = 1.9 x 107^7 pc cm6^{-6}. We identify 16 HC HII\tiny{II} region candidates and 8 intermediate objects between the classes of HC HII\tiny{II} and UC HII\tiny{II} regions. The ne_e, diam, and EM change as expected, however, the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman continuum photons are absorbed by dust within these HII\tiny{II} regions and the dust absorption fraction tends to be more significant for more compact and younger HII\tiny{II} regions. CONCLUSIONS: Young HII\tiny{II} regions are commonly located in dusty clumps; HC HII\tiny{II} regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted

    Confirmation of a pi_1^0 Exotic Meson in the \eta \pi^0 System

    Full text link
    The exclusive reaction πpηπ0n\pi^- p \to \eta \pi^0 n, ηπ+ππ0\eta \to \pi^+ \pi^- \pi^0 at 18 GeV/c/c has been studied with a partial wave analysis on a sample of 23~492 ηπ0n\eta \pi^0 n events from BNL experiment E852. A mass-dependent fit is consistent with a resonant hypothesis for the P+P_+ wave, thus providing evidence for a neutral exotic meson with JPC=1+J^{PC} = 1^{-+}, a mass of 1257±20±251257 \pm 20 \pm 25 MeV/c2/c^2, and a width of 354±64±60354 \pm 64 \pm 60 MeV/c2/c^2. New interpretations of the meson exotics in neutral ηπ0\eta \pi^0 system observed in E852 and Crystal Barrel experiments are discussed.Comment: p3, rewording the paragraph (at the bottom) about the phase variations. p4, rewording paragrath "The second method ..." . p4, at the bottom of paragrath "The third method ..." added consistent with the results of methods 1 and 2

    Lepton flavor violation decays τμP1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τμP1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π\pi^+\pi^-, K+KK^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    Search for lepton-flavor-violating τV0\tau\to\ell V^0 decays at Belle

    Full text link
    We have searched for neutrinoless τ\tau lepton decays into \ell and V0V^0, where \ell stands for an electron or muon, and V0V^0 for a vector meson (ϕ\phi, ω\omega, K0K^{*0}, Kˉ0\bar{K}^{*0} or ρ0\rho^0), using 543 fb1^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. No excess of signal events over the expected background has been observed, and we set upper limits on the branching fractions in the range (5.918)×108(5.9-18) \times 10^{-8} at the 90% confidence level. These upper limits include the first results for the ω\ell \omega mode as well as new limits that are significantly more restrictive than our previous results for the ϕ\ell \phi, K0\ell K^{*0}, Kˉ0\ell \bar{K}^{*0} and ρ0\ell \rho^0 modes.Comment: 7 pages, 16 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Measurement of the ratio B(D0->pi+pi-pi0)/B(D0->K-pi+pi0) and the time-integrated CP asymmetry in D0->pi+pi-pi0

    Full text link
    We report a high-statistics measurement of the relative branching fraction B(D0->pi+pi-pi0)/B(D0->K-pi+pi0) using a 532 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The measured value of the relative branching fraction is B(D0->pi+pi-pi0)/B(D0->K-pi+pi0) = (10.12 +/- 0.04(stat) +/- 0.18(syst))x10^{-2} which has an accuracy comparable to the world average. We also present a measurement of the time-integrated CP asymmetry in D0->pi+pi-pi0 decay. The result, A_{CP} = (0.43 +/- 1.30)%, shows no significant CP violation.Comment: 15 pages, 11 figures, submitted to Physics Letters
    corecore