48 research outputs found
A CsI hodoscope on CSHINE for Bremsstrahlung {\gamma}-rays in Heavy Ion Reactions
Bremsstrahlung production in heavy ion reactions at Fermi energies
carries important physical information including the nuclear symmetry energy at
supra-saturation densities. In order to detect the high energy Bremsstrahlung
rays, a hodoscope consisting of 15 CsI(Tl) crystal read out by photo
multiplier tubes has been built, tested and operated in experiment. The
resolution, efficiency and linear response of the units to rays have
been studied using radioactive source and reactions. The
inherent energy resolution of is obtained.
Reconstruction method has been established through Geant 4 simulations,
reproducing the experimental results where comparison can be made. Using the
reconstruction method developed, the whole efficiency of the hodoscope is about
against the emissions at the target position,
exhibiting insignificant dependence on the energy of incident rays
above 20 MeV. The hodoscope is operated in the experiment of Kr +
Sn at 25 MeV/u, and a full energy spectrum up to 80 MeV has
been obtained.Comment: 9 pages, 19 figure
A Novel Splicing Mutation Alters DSPP Transcription and Leads to Dentinogenesis Imperfecta Type II
Dentinogenesis imperfecta (DGI) type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP) gene were revealed to be the causation of DGI type II (DGI-II). In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C) lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases
Probing high-momentum component in nucleon momentum distribution by neutron-proton bremsstrahlung {\gamma}-rays in heavy ion reactions
The high momentum tail (HMT) of nucleons, as a signature of the short-range
correlations in nuclei, has been investigated by the high-energy bremsstrahlung
rays produced in Kr + Sn at 25 MeV/u. The energetic
photons are measured by a CsI(Tl) hodoscope mounted on the spectrometer CSHINE.
The energy spectrum above 30 MeV can be reproduced by the IBUU model
calculations incorporating the photon production channel from process in
which the HMTs of nucleons is considered. A non-zero HMT ratio of about
is favored by the data. The effect of the capture channel is
demonstrated
Aspect of Clusters Correlation at Light Nuclei Excited State
The correlation of was probed via measuring the transverse
momentum and width of one , for the first time,
which represents the spatial and dynamical essentialities of the initial
coupling state in Be nucleus. The weighted interaction vertex of
3 reflected by the magnitudes of their relative momentums and relative
emission angles proves the isosceles triangle configuration for 3 at
the high excited energy analogous Hoyle states.Comment: 8 pages, 9 figure
Variation of Tensor Force due to Nuclear Medium Effect
The enhancement of =3(0) state with isospin excited
by the tensor force in the free Li nucleus has been observed, for the
first time, relative to a shrinkable excitation in the Li cluster
component inside its host nucleus. Comparatively, the excitation of
=0(1) state with isospin for these two Li
formations take on an approximately equal excitation strength. The mechanism of
such tensor force effect was proposed due to the intensive nuclear medium role
on isospin =0 state.Comment: 6 pages, 4 figure
Multi-alpha Boson Gas state in Fusion Evaporation Reaction and Three-body Force
The experimental evidence for the Boson gas state in the
C+CMg fusion evaporation reaction is
presented. By measuring the emission spectrum with multiplicity 2 and
3, we provide insight into the existence of a three-body force among
particles. The observed spectrum exhibited distinct tails corresponding to
particles emitted in pairs and triplets consistent well with the
model-calculations of AV18-UX and chiral effective field theory of NV2-3-la*,
indicating the formation of clusters with three-body force in the
Boson gas state.Comment: 7 pages, 6 figure
Revisit to the yield ratio of triton and He as an indicator of neutron-rich neck emission
The neutron rich neck zone created in heavy ion reaction is experimentally
probed by the production of the isobars. The energy spectra and angular
distributions of triton and He are measured with the CSHINE detector in
Kr +Pb reactions at 25 MeV/u. While the energy spectrum of
He is harder than that of triton, known as "He-puzzle", the yield
ratio presents a robust rising trend with the polar angle in
laboratory. Using the fission fragments to reconstruct the fission plane, the
enhancement of out-plane is confirmed in comparison to the
in-plane ratios. Transport model simulations reproduce qualitatively the
experimental trends, but the quantitative agreement is not achieved. The
results demonstrate that a neutron rich neck zone is formed in the reactions.
Further studies are called for to understand the clustering and the isospin
dynamics related to neck formation
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Investigation of antioxidant edible coating and modified atmosphere packaging for enhancing storability of hazelnut kernels
This study investigated the effects of antioxidant edible coating and modified atmosphere packaging for improving storability of dried hazelnut kernels by delaying lipid oxidation and color degradation. Hazelnut kernels were coated with different coating matrix (methylcellulose and chitosan) that contain different antioxidant substances (DL-α-tocopherol acetate, cinnamon essential oil, rosemary essential oil and hazelnut oil) and subjected to an accelerated storage condition at 35 °C for 270 days. Hazelnut kernels were also packed under modified atmosphere (MAP) with 100 % N2 in mylar bags and stored at 35 °C for 180 days. Lipid oxidation (free fatty acids, K232 and K270, peroxide values) and color (browning index) were measured for investigating quality changes during the storage. The free fatty acids of kernels from two packaging experiments remained stable during storage. K232 value of MAP kernels was significantly lower (2.20) than that of control (2.90) at the end of the storage, showing delayed production of conjugated dienes. The chitosan based edible coating with encapsulated cinnamon essential oil and oleic acid (CH/ECO/OA) resulted in significantly (P < 0.05) lower PV values (0.53 meq/kg oil), and all the coated samples had the positive effect on reducing browning index with 12–25 compared with control. K270 (0.04–0.18) remained relatively low throughout the long-term storage. As a result, modified atmosphere packaging performed better than edible coatings. This study demonstrated the importance of implicating proper postharvest technology for reducing lipid oxidation and quality deteriorations of hazelnut kernels during prolonged storage