1,094 research outputs found
Bias compensation recursive algorithm for dual-rate rational models
© The Institution of Engineering and Technology 2018. In dual-rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and then the model parameters. The algorithm based on auxiliary model and particle filter has four steps: (i) to establish an auxiliary model to estimate unmeasurable outputs, (ii) to compensate bias induced by correlated noise, (iii) to add a filter to improve estimation accuracy of the unmeasurable outputs and (iv) to obtain an unbiased parameter estimation. Three examples are selected for simulation demonstrations to give further guarantees on the usefulness of the proposed algorithms. The comparative studies show that the bias compensation RLS is more effective for such systems with dual-rate input and output data
Sequential optimization for efficient high-quality object proposal generation
We are motivated by the need for a generic object proposal generation algorithm which achieves good balance between object detection recall, proposal localization quality and computational efficiency. We propose a novel object proposal algorithm, BING ++, which inherits the virtue of good computational efficiency of BING [1] but significantly improves its proposal localization quality. At high level we formulate the problem of object proposal generation from a novel probabilistic perspective, based on which our BING++ manages to improve the localization quality by employing edges and segments to estimate object boundaries and update the proposals sequentially. We propose learning the parameters efficiently by searching for approximate solutions in a quantized parameter space for complexity reduction. We demonstrate the generalization of BING++ with the same fixed parameters across different object classes and datasets. Empirically our BING++ can run at half speed of BING on CPU, but significantly improve the localization quality by 18.5 and 16.7 percent on both VOC2007 and Microhsoft COCO datasets, respectively. Compared with other state-of-the-art approaches, BING++ can achieve comparable performance, but run significantly faster
Gradient-based particle filter algorithm for an ARX model with nonlinear communication output
A stochastic gradient (SG)-based particle filter (SG-PF) algorithm is developed for an ARX model with nonlinear communication output in this paper. This ARX model consists of two submodels, one is a linear ARX model and the other is a nonlinear output model. The process outputs (outputs of the linear submodel) transmitted over a communication channel are unmeasurable, while the communication outputs (outputs of the nonlinear submodel) are available, and both of the twotype outputs are contaminated by white noises. Based on the rich input data and the available communication output data, a SG-PF algorithm is proposed to estimate the unknown process outputs and parameters of the ARX model. Furthermore, a direct weight optimization method and the Epanechnikov kernel method are extended to modify the particle filter when the measurement noise is a Gaussian noise with unknown variance and the measurement noise distribution is unknown. The simulation results demonstrate that the SG-PF algorithm is effective
Sequential Optimization for Efficient High-Quality Object Proposal Generation
We are motivated by the need for a generic object proposal generation
algorithm which achieves good balance between object detection recall, proposal
localization quality and computational efficiency. We propose a novel object
proposal algorithm, BING++, which inherits the virtue of good computational
efficiency of BING but significantly improves its proposal localization
quality. At high level we formulate the problem of object proposal generation
from a novel probabilistic perspective, based on which our BING++ manages to
improve the localization quality by employing edges and segments to estimate
object boundaries and update the proposals sequentially. We propose learning
the parameters efficiently by searching for approximate solutions in a
quantized parameter space for complexity reduction. We demonstrate the
generalization of BING++ with the same fixed parameters across different object
classes and datasets. Empirically our BING++ can run at half speed of BING on
CPU, but significantly improve the localization quality by 18.5% and 16.7% on
both VOC2007 and Microhsoft COCO datasets, respectively. Compared with other
state-of-the-art approaches, BING++ can achieve comparable performance, but run
significantly faster.Comment: Accepted by TPAM
Strong Bond Activation with Late Transition-Metal Pincer Complexes as a Foundation for Potential Catalysis
Strong bond activation mediated by pincer ligated transiton-metal complexes has been the subject of intense study in recent years, due to its potential involvement in catalytic transformations. This dissertation has focused on the net heterolytic cleavage of B-H and B-B bonds across the N-Pd bond in a cationic (PNP)Pd fragment, the C-H oxidative addition to a (PNP)Ir center and the recent results on the C-H and C-O oxidative addition in reactions of aryl carboxylates with the (PNP)Rh fragment.
Transition metal carbene and carbyne complexes are of great interest because of their role in a wide variety of catalytic reactions. Our work has resulted in the isolation of a rhodium(I) difluorocarbene. Reaction of the rhodium difluorocarbene complex with a silylium salt led to the C-F bond cleavage and the formation of a terminal fluorocarbyne complex.
Reductive elimination is a critical step of cross coupling reactions. In order to examine the effect of the pincer ligand on the reductive elimination reactions from Rh(III), the first pi-accepting PNP ligand bearing pyrrolyl substituents was prepared and installed onto the rhodium center. Arylhalide (halide = Br, I) oxidative addition was achieved in the presence of donor ligands such as acetonitrile to form stable six-coordinate Rh(III) compounds. The C-O reductive elimination reactions in this system were also explored
Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms
A pulsar timing array is a Galactic-scale detector of nanohertz gravitational
waves (GWs). Its target signals contain two components: the `Earth term' and
the `pulsar term' corresponding to GWs incident on the Earth and pulsar
respectively. In this work we present a Frequentist method for the detection
and localization of continuous waves that takes into account the pulsar term
and is significantly faster than existing methods. We investigate the role of
pulsar terms by comparing a full-signal search with an Earth-term-only search
for non-evolving black hole binaries. By applying the method to synthetic data
sets, we find that (i) a full-signal search can slightly improve the detection
probability (by about five percent); (ii) sky localization is biased if only
Earth terms are searched for and the inclusion of pulsar terms is critical to
remove such a bias; (iii) in the case of strong detections (with
signal-to-noise ratio 30), it may be possible to improve pulsar
distance estimation through GW measurements.Comment: 12 pages, 9 figures, typos corrected. To match the published version.
Code implementing this method is available at the PPTA Wiki pag
Probing the C-H Activation of Linear and Cyclic Ethers at (PNP)Ir
Interaction of the amido/bis(phosphine)-supported (PNP)Ir fragment with a series of linear and cyclic ethers is shown to afford, depending on substrate, products of α,α-dehydrogenation (carbenes), α,β-dehydrogenation (vinyl ethers), or decarbonylation. While carbenes are exclusively obtained from tert-amyl methyl ether, sec-butyl methyl ether (SBME), n-butyl methyl ether (NBME), and tetrahydrofuran (THF), vinyl ethers or their adducts are observed upon reaction with diethyl ether and 1,4-dioxane. Decarbonylation occurs upon interaction of (PNP)Ir with benzyl methyl ether, and a mechanism is proposed for this unusual transformation, which occurs via a series of C−H, C−O, and C−C bond cleavage events. The intermediates characterized for several of these reactions as well as the α,α-dehydrogenation of tert-butyl methyl ether (MTBE) are used to outline a reaction pathway for the generation of PNP-supported iridium(I) carbene complexes, and it is shown that the long-lived, observable intermediates are substrate-dependent and differ for the related cases of MTBE and THF. Taken together, these findings highlight the variety of pathways utilized by the electron-rich, unsaturated (PNP)Ir fragment to stabilize itself by transferring electron density to ethereal substrates through oxidative addition and/or the formation of π-acidic ligands
- …