21 research outputs found

    Investigation of Electrolyte Wetting in Lithium Ion Batteries: Effects of Electrode Pore Structures and Solution

    Get PDF
    Beside natural source energy carriers such as petroleum, coal and natural gas, the lithium ion battery is a promising man-made energy carrier for the future. This is a similar process evolved from horse-powered era to engine driven age. There are still a lot of challenges ahead like low energy density, low rate performance, aging problems, high cost and safety etc. In lithium ion batteries, investigation about manufacturing process is as important as the development of material. The manufacturing of lithium ion battery, including production process (slurry making, coating, drying etc.), and post-production (slitting, calendering etc.) is also complicated and critical to the overall performance of the battery. It includes matching the capacity of anode and cathode materials, trial-and-error investigation of thickness, porosity, active material and additive loading, detailed microscopic models to understand, optimize, and design these systems by changing one or a few parameters at a time. In the manufacturing, one of the most important principles is to ensure good wetting properties between porous solid electrodes and liquid electrolyte. Besides the material surface properties, it is the process of electrolyte transporting to fill the pores in the electrode after injection is less noticed in academic, where only 2-3 drops of electrolyte are needed for lab coin cell level. In industry, the importance of electrolyte transport is well known and it is considered as part of electrolyte wetting (or initial wetting in some situations). In consideration of practical usage term, electrolyte wetting is adopted to use in this dissertation for electrolyte transporting process, although the surface chemistry about wetting is not covered. An in-depth investigation about electrolyte wetting is still missing, although it has significant effects in manufacturing. The electrolyte wetting is determined by properties of electrolyte and electrode microstructure. Currently, only viscosity and surface tension of electrolyte is used to reflect performance of electrolyte wetting. There are very few reports about quantitative measurement about electrolyte wetting. Moreover, there are only simple qualitative observations, good, poor, and fair, were reported on the wettability of microporous separators. Therefore, development of a quantitative analysis method is critical to help understand the mechanism of how electrolyte wetting is affected by material properties and manufacturing processes. In this dissertation, a quantitative test method is developed to analyze the electrolyte wetting performance. Wetting rate, measured by wetting balance method, is used to quantitatively measure the speed of electrolyte wetting. The feasibility of the wetting rate is demonstrated by repeated test of wetting rate between electrolytes and electrodes. Various electrolytes from single solvents to complicated industrial level electrolytes are measured with baseline electrodes. Electrodes with different composition, active materials and manufacturing process, separator sheets with different materials and additives are also measured with baseline electrolyte. The wetting behaviors for different materials and manufacturing processes could be used to help improve the optimization of production process. It is very necessary to reveal the mechanism underlying electrolyte wetting, especially the effects of electrode pore microstructure. The Electrodes, which are composed of active material, binder and carbon black, are formed by production process (rheological processing, coating, drying), and post-production process (calendaring and slicing etc.). The pore structure is also complicated by the broad size range of pores from nanometer to tens micrometer. In this dissertation, a pore network concept, as revealed in the MIP test (mercury intrusion porosimetry), is employed to characterize the electrode pore structure. It is composed by the random pore cavity and connected part of pores, which are further described by the percentage of total pore volume and the threshold and critical pore diameter. The effect of calendering process on electrolyte wetting, as a demonstration for typical post-production process, has been revealed by the wetting balance analysis. A quantitative analysis of the pore structure under the pore network concept is used to investigate the evolution of pore structure with the increase of calendering force. Based on the pore structure, the hypothesis of combined effects of capillary and converging-diverging flow in electrolyte wetting is proposed to understand the mechanism. A further demonstration of the effect of production process by adding excessive carbon black is accomplished. The hypothesis is valid to explain the electrolyte wetting behavior with increasing amount of carbon black. The pore structure differences between electrodes with various amount of carbon black are shown by the scanning electron microscope

    Mechanism and Growth of Flexible ZnO Nanostructure Arrays in a Facile Controlled Way

    Get PDF
    Nanostructure arrays-based flexible devices have revolutionary impacts on the application of traditional semiconductor devices. Here, a one-step method to synthesize flexible ZnO nanostructure arrays on Zn-plated flexible substrate in Zn(NO3)2/NH3⋅H2O solution system at 70–90∘C was developed. We found out that the decomposition of Zn(OH)2 precipitations, formed in lower NH3⋅H2O concentration, in the bulk solution facilitates the formation of flower-like structure. In higher temperature, 90∘C, ZnO nanoplate arrays were synthesized by the hydrolysis of zinc hydroxide. Highly dense ZnO nanoparticale layer formed by the reaction of NH3⋅H2O with Zn plating layer in the initial self-seed process could improve the vertical alignment of the nanowires arrays. The diameter of ZnO nanowire arrays, from 200 nm to 60 nm, could be effectively controlled by changing the stability of Zn(NH3)42+ complex ions by varying the ratio of Zn(NO3)2 to NH3⋅H2O which further influence the release rate of Zn2+ ions. This is also conformed by different amounts of the Zn vacancy as determined by different UV emissions of the PL spectra in the range of 380–403 nm

    Codonopsis pilosula Polysaccharide Attenuates Tau Hyperphosphorylation and Cognitive Impairments in hTau Infected Mice

    Get PDF
    Codonopsis pilosula polysaccharide (CPPs), a natural products with potentially lower toxicity and better bioavailability has been used in traditional Chinese medicine for 1000s of years and a neuroprotective polysaccharide mitigates tau pathology in Alzheimer’s disease (AD) mouse model. However, whether CPPs can relieve AD pathology and cognitive defects remains poorly understood. Here we reported that CPPs remarkably increased the cell viability and PP2A activity, decreased tau phosphorylation in HEK 293/tau cells. Next, we employed an adeno-associated virus serotype 2 (AAV2)-induced expression of human full length tau (hTau) in C57/BL6 mice to mimic AD tau pathology. One month intragastric administration of CPPs significantly increased PP2A activity and reduced tau phosphorylation at Ser199, Ser202/Thr205 (AT8) and Thr231 in hippocampus of AAV2-hTau infected mice. Furthermore, behavioral tests revealed that CPPs rescued hTau overexpression induced cognitive defects while CPPs significantly increased the fEPSP slope and synaptic proteins including synaptotagmin and synaptophysin. Together, our data suggest that CPPs might prevent AD-like tau hyperphosphorylation via activation of PP2A and attenuates AD-like cognitive impairments through restoring the synaptic plasticity and synaptogenesis. In conclusion, our findings suggest that CPPs might be a potential candidate compound for the treatment of tau related diseases

    A volume-stress model for sands under isotropic and critical stress states

    No full text
    A simple volume-stress model for granular soils under isotropic and critical stress states is presented. The model is formulated in the double logarithmic space of void ratio versus mean stress. It has the same number of parameters as used in the Cam Clay models to describe isotropic compression, with one additional parameter to define the critical state curve. The model can qualitatively describe a number of unique features of sand behaviour. Comparison with experimental data indicates that the model is able to predict well the volume change of a range of different sands subjected to isotropic and triaxial compression

    A symmetrisation method for non-associated unified hardening model

    No full text
    This paper presents a simple method for symmetrising the asymmetric elastoplastic matrix arising from non-associated flow rules. The symmetrisation is based on mathematical transformation and does not alter the incremental stress–strain relationship. The resulting stress increment is identical to that obtained using the original asymmetrized elastoplastic matrix. The symmetrisation method is applied to integrate the Unified Hardening (UH) model where the elastoplastic matrix is asymmetric due to stress transformation. The performance of the method is verified through finite element analysis (FEA) of boundary value problems such as triaxial extension tests and bearing capacity of foundations. It is found that the symmetrisation method can improve the convergence of the FEA and reduce computational time significantly for non-associated elastoplastic models

    Measurement of the low energy

    No full text
    The cosmic 1.809 MeV γ-ray emitted by the radioactive nucleus 26Al in the Galaxy is one of the key observation targets of the γ-ray astronomy. The 26Al is mainly produced by the 25Mg(p,γ)26Al reaction in the stellar Mg-Al reaction cycle. At the astrophysical relevant temperatures, the reaction rates of 25Mg(p,γ)26Al are dominated by several narrow resonances at low energy. This work reports a measurement of the low energy 25Mg(p,γ)26Al resonances at Jinping Underground Nuclear Astrophysics experimental facility (JUNA) in the China Jinping Underground Laboratory (CJPL)

    Measurement of the

    No full text
    22Ne(α,n)25Mg is one of the main neutron sources of the s process. 22Ne is produced by the 14N(α, γ)18F(β+)18O(α, γ)22Ne reaction chain in the helium burning, thus, the production rate of 22Ne is dominated by 14N(α,γ)18F and 18O(α,γ)22Ne. At the astrophysical relevant temperatures, the 18O(α,γ)22Ne reaction rates are determined by several low-energy resonances. In this work, the 18O(α,γ)22Ne reaction was measured at the 400 kV accelerator of Jinping Underground Nuclear Astrophysics experiment (JUNA). The γ-ray yields of the resonances between 470 to 770 keV were obtained
    corecore