57,105 research outputs found
Kervolutional Neural Networks
Convolutional neural networks (CNNs) have enabled the state-of-the-art
performance in many computer vision tasks. However, little effort has been
devoted to establishing convolution in non-linear space. Existing works mainly
leverage on the activation layers, which can only provide point-wise
non-linearity. To solve this problem, a new operation, kervolution (kernel
convolution), is introduced to approximate complex behaviors of human
perception systems leveraging on the kernel trick. It generalizes convolution,
enhances the model capacity, and captures higher order interactions of
features, via patch-wise kernel functions, but without introducing additional
parameters. Extensive experiments show that kervolutional neural networks (KNN)
achieve higher accuracy and faster convergence than baseline CNN.Comment: oral paper in CVPR 201
Management services and small business.
Thesis (M.B.A.)--Boston Universit
Recommended from our members
Promoting communicative competence through drama in elementary English as a foreign language
- …