10,976 research outputs found
ZnO random laser diode arrays for stable single-mode operation at high power
2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment
postprin
A novel technique for evaluating and selecting logistics service providers based on the logistics resource view
The increasing importance of logistics outsourcing and availability of logistics services providers (LSPs) highlights the significance and complexity of the LSP evaluation and selection process. Most existing LSP evaluation and selection studies use historical performance data and assume independence among decision criteria. This paper proposes an integrated logistics outsourcing approach to evaluate and select LSPs based on their logistics resources and capabilities. This novel approach combines a fuzzy decision making trial, valuation laboratory (FDEMATEL) and fuzzy techniques to order preferences by similarity to ideal solution (FTOPS IS) methods. The new multi-criteria decision making (MCDM) model addresses the impact relationships between decision criteria and ranks LSP alternatives against weighted resources and capabilities. The effectiveness of this approach is demonstrated through a real case study and a two-phase sensitivity analysis confirms its robustness
Immunomodulatory activity of Pestalotiopsis sp., an endophytic fungus from Tripterygium wilfordii
published_or_final_versio
The Radiated Energy Budget of Chromospheric Plasma in a Major Solar Flare Deduced From Multi-Wavelength Observations
This paper presents measurements of the energy radiated by the lower solar
atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare
(SOL2011-02-15T01:56) in response to an injection of energy assumed to be in
the form of nonthermal electrons. Hard X-ray observations from RHESSI were used
to track the evolution of the parameters of the nonthermal electron
distribution to reveal the total power contained in flare accelerated
electrons. By integrating over the duration of the impulsive phase, the total
energy contained in the nonthermal electrons was found to be
erg. The response of the lower solar atmosphere was measured in the free-bound
EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II
at 304\AA\ and H I (Ly) at 1216\AA\ by SDO/EVE, the UV continua at
1600\AA\ and 1700\AA\ by SDO/AIA, and the WL continuum at 4504\AA, 5550\AA, and
6684\AA, along with the Ca II H line at 3968\AA\ using Hinode/SOT. The summed
energy detected by these instruments amounted to erg;
about 15% of the total nonthermal energy. The Ly line was found to
dominate the measured radiative losses. Parameters of both the driving electron
distribution and the resulting chromospheric response are presented in detail
to encourage the numerical modelling of flare heating for this event, to
determine the depth of the solar atmosphere at which these line and continuum
processes originate, and the mechanism(s) responsible for their generation.Comment: 14 pages, 18 figures. Accepted for publication in Astrophysics
Journa
Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells.
Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5\u27-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer cells. Further studies are warranted to validate the efficacy and safety of ALS in the treatment of ovarian cancer
Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer
Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection
Hot Streaks in Artistic, Cultural, and Scientific Careers
The hot streak, loosely defined as winning begets more winnings, highlights a
specific period during which an individual's performance is substantially
higher than her typical performance. While widely debated in sports, gambling,
and financial markets over the past several decades, little is known if hot
streaks apply to individual careers. Here, building on rich literature on
lifecycle of creativity, we collected large-scale career histories of
individual artists, movie directors and scientists, tracing the artworks,
movies, and scientific publications they produced. We find that, across all
three domains, hit works within a career show a high degree of temporal
regularity, each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained
by a simple hot-streak model we developed, allowing us to probe quantitatively
the hot streak phenomenon governing individual careers, which we find to be
remarkably universal across diverse domains we analyzed: The hot streaks are
ubiquitous yet unique across different careers. While the vast majority of
individuals have at least one hot streak, hot streaks are most likely to occur
only once. The hot streak emerges randomly within an individual's sequence of
works, is temporally localized, and is unassociated with any detectable change
in productivity. We show that, since works produced during hot streaks garner
significantly more impact, the uncovered hot streaks fundamentally drives the
collective impact of an individual, ignoring which leads us to systematically
over- or under-estimate the future impact of a career. These results not only
deepen our quantitative understanding of patterns governing individual
ingenuity and success, they may also have implications for decisions and
policies involving predicting and nurturing individuals with lasting impact
Photon-induced conduction modulation in SiO 2 thin films embedded with Ge nanocrystals
The authors report the photon-induced conduction modulation in Si O2 thin films embedded with germanium nanocrystals (nc-Ge). The conduction of the oxide could be switched to a higher- or lower-conductance state by a ultraviolet (UV) illumination. The conduction modulation is caused by charging and discharging in the nc-Ge due to the UV illumination. If the charging process is dominant, the oxide conductance is reduced; however, if the discharging process is dominant, the oxide conductance is increased. As the conduction can be modulated by UV illumination, it could have potential applications in silicon-based optical memory devices. © 2007 American Institute of Physics.published_or_final_versio
- …
