197,434 research outputs found

    Comment on "Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms"

    Full text link
    Chen, Apalkov, and Chakraborty (Phys. Rev. Lett. 98, 186803 (2007)) have computed Fock-Darwin levels of a graphene dot by including only basis states with energies larger than or equal to zero. We show that their results violate the Hellman-Feynman theorem. A correct treatment must include both positive and negative energy basis states. Additional basis states lead to new energy levels in the optical spectrum and anticrossings between optical transition lines.Comment: 1 page, 1 figure, accepted for publication in PR

    Finite circular plate on elastic foundation centrally loaded by rigid spherical indenter

    Get PDF
    The analytical solution of a finite circular plate on an elastic foundation centrally loaded by the rigid indenter is discussed. The procedure to use NASTRAN as a subroutine to iteratively converge to this solution numerically is described

    States near Dirac points of rectangular graphene dot in a magnetic field

    Get PDF
    In neutral graphene dots the Fermi level coincides with the Dirac points. We have investigated in the presence of a magnetic field several unusual properties of single electron states near the Fermi level of such a rectangular-shaped graphene dot with two zigzag and two armchair edges. We find that a quasi-degenerate level forms near zero energy and the number of states in this level can be tuned by the magnetic field. The wavefunctions of states in this level are all peaked on the zigzag edges with or without some weight inside the dot. Some of these states are magnetic field-independent surface states while the others are field-dependent. We have found a scaling result from which the number of magnetic field-dependent states of large dots can be inferred from those of smaller dots.Comment: Physical review B in pres

    Adaptive control of a manipulator with a flexible link

    Get PDF
    An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link
    • …
    corecore