107,091 research outputs found
Recommended from our members
Reaction Mechanisms for Long-Life Rechargeable Zn/MnO 2 Batteries
Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density. Their usage, however, is largely hampered by the fast capacity fade. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO 2 system. In this study, we find that both H + /Zn 2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By limiting the irreversible conversion reactions at â1.26 V, we successfully demonstrate ultrahigh power and long life that are superior to most of the reported ZIBs or even some lithium-ion batteries
Real-time motion data annotation via action string
Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method
Realization of universal quantum cloning with SQUID qubits in a cavity
We propose a scheme to realize universal quantum cloning machine
(UQCM) with superconducting quantum interference device (SQUID) qubits, embeded
in a high-Q cavity. CNOT operations are derived to present our scheme, and the
two-photon Raman resonance processes are used to increase the operation rate.
Compared with previous works, our scheme has advantages in the experimental
realization and further utilization.Comment: 4 pages, 2 figure
Energy transfer process in gas models of Lennard-Jones interactions
We perform simulations to investigate how the energy carried by a molecule
transfers to others in an equilibrium gas model. For this purpose we consider a
microcanonical ensemble of equilibrium gas systems, each of them contains a
tagged molecule located at the same position initially. The ensuing transfer
process of the energy initially carried by the tagged molecule is then exposed
in terms of the ensemble-averaged energy density distribution. In both a 2D and
a 3D gas model with Lennard-Jones interactions at room temperature, it is found
that the energy carried by a molecule propagates in the gas ballistically, in
clear contrast with the Gaussian diffusion widely assumed in previous studies.
A possible scheme of experimental study of this issue is also proposedComment: 5 pages,3 figur
Recommended from our members
Experimental observation of chiral phonons in monolayer WSe2
Chirality characterizes an object that is not identical to its mirror image. In condensed matter physics, Fermions have been demonstrated to obtain chirality through structural and time-reversal symmetry breaking. These systems display unconventional electronic transport phenomena such as the quantum Hall effect and Weyl semimetals. However, for bosonic collective excitations in atomic lattices, chirality was only theoretically predicted and has never been observed. We experimentally show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide, whose lattice breaks the inversion symmetry and enables inequivalent electronic K and -K valley states. The time-reversal symmetry is also broken when we selectively excite the valley polarized holes by circularly polarized light. Brillouin-zone-boundary phonons are then optically created by the indirect infrared absorption through the hole-phonon interactions. The unidirectional intervalley transfer of holes ensures that only the phonon modes in one valley are excited. We found that such photons are chiral through the transient infrared circular dichroism, which proves the valley phonons responsible to the indirect absorption has non-zero pseudo-angular momentum. From the spectrum we further deduce the energy transferred to the phonons that agrees with both the first principle calculation and the double-resonance Raman spectroscopy. The chiral phonons have significant implications for electron-phonon coupling in solids, lattice-driven topological states, and energy efficient information processing
Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24
Solar active region (AR) 12673 in 2017 September produced two largest flares
in Solar Cycle 24: the X9.3 flare on September 06 and the X8.2 flare on
September 10. We attempt to investigate the evolutions of the two great flares
and their associated complex magnetic system in detail. Aided by the NLFFF
modeling, we identify a double-decker flux rope configuration above the
polarity inversion line (PIL) in the AR core region. The north ends of these
two flux ropes were rooted in a negative- polarity magnetic patch, which began
to move along the PIL and rotate anticlockwise before the X9.3 flare on
September 06. The strong shearing motion and rotation contributed to the
destabilization of the two magnetic flux ropes, of which the upper one
subsequently erupted upward due to the kink-instability. Then another two sets
of twisted loop bundles beside these ropes were disturbed and successively
erupted within 5 minutes like a chain reaction. Similarly, multiple ejecta
components were detected to consecutively erupt during the X8.2 flare occurring
in the same AR on September 10. We examine the evolution of the AR magnetic
fields from September 03 to 06 and find that five dipoles emerged successively
at the east of the main sunspot. The interactions between these dipoles took
place continuously, accompanied by magnetic flux cancellations and strong
shearing motions. In AR 12673, significant flux emergence and successive
interactions between the different emerging dipoles resulted in a complex
magnetic system, accompanied by the formations of multiple flux ropes and
twisted loop bundles. We propose that the eruptions of a multi-flux-rope system
resulted in the two largest flares in Solar Cycle 24.Comment: 10 pages, 8 figures. To be published in A&
- …