64 research outputs found

    Localized and Propagated Surface Plasmons in Metal Nanoparticles and Nanowires

    Get PDF
    Surface plasmons are coherent electron oscillations behaving as localized and propagated modes in metal nanoparticles and nanowires, respectively. In this chapter, we first review some of the applications made in plasmonics with gold nanorods/nanospheres and silver nanowires. For gold nanoparticles with a size of 1–100 nm, the surface plasmons are confined around the particle surface as localized modes to enhance the near-field. For diameter of around 200–300 nm silver nanowires with a length up to 10 ÎŒm, the surface plasmons can propagate along the nanowires as waveguide modes to guide the plasmons. We then describe some novel results with regarding to gold nanorod enhanced light emission, silver nanowire supported plasmonic waveguide, gold nanosphere mediated whispering-gallery-mode emission, and energy conversion in silver-polymer plasmonic nanostructures. The work of this chapter highlights the applications of metal nanoparticles and nanowires in plasmonic waveguides to achieve optical energy generation, propagation, and conversion

    Observation of Full-Parameter Jones Matrix in Bilayer Metasurface

    Full text link
    Metasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2*2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e., degrees of freedom, DOFs) in the Jones matrix determines the limit to what functionalities we can realize. Great efforts have been made to continuously expand the number of DOFs, and a maximal number of six has been achieved recently. However, the realization of 'holy grail' goal with eight DOFs (full free parameters) has been proven as a great challenge so far. Here, we show that by cascading two layer metasurfaces and utilizing the gradient descent optimization algorithm, a spatially varying Jones matrix with eight DOFs is constructed and verified numerically and experimentally in optical frequencies. Such ultimate control unlocks new opportunities to design optical functionalities that are unattainable with previously known methodologies and may find wide potential applications in optical fields.Comment: 53 paegs, 4 figure

    Cancer cells remodeling and quality control are inextricably linked to autophagy

    Get PDF
    Autophagy is a normal cellular physiological process. As one of the cell degradation systems, it participates in the lysosomal pathway process of degrading damaged proteins and subcellular organelles to maintain cell metabolism and energy states. Moreover, autophagy is essential for regulating organelle quality control and cell homeostasis. In recent decades, a large number of studies have demonstrated that autophagy abnormalities are present in a variety of human malignancies and that autophagy plays a crucial role in all stages of tumor development. Multiple tumors interfere with autophagy's normal regulation and use autophagy's essential properties to restructure their proteome, reprogram their metabolism, and adapt to stress. This article primarily discusses how autophagy either promotes or inhibits cancer development, the significance of autophagy in maintaining cell genome stability, and the role of selective autophagy in the reshaping and quality control of tumor cells

    Electroacupuncture ameliorates peptic ulcer disease in association with gastroduodenal microbiota modulation in mice

    Get PDF
    Peptic ulcer disease (PUD) is a common disease and frequently encountered in the clinic. Accumulating evidence suggests that PUD is associated with the gastrointestinal microbiota. Electroacupuncture (EA) is an improved version of acupuncture, which can improve the clinical effect by increasing the stimulation and delivering appropriate electrical pulses to needles. This method has been widely used in the treatment of peptic ulcer disease. However, its effect on gastrointestinal microbiota remains unclear. Therefore, in the present study, the ameliorative effect of EA was evaluated on the gastroduodenal mucosa, and the regulatory effect of the gastroduodenal microbiota was assessed in PUD mice. A total of 48 male Kun Ming mice were randomly divided into the following groups: normal control group (NC), PUD model group (PUD), Shousanli group (LI10), and Zusanli group (ST36) (n=12). The mice in groups LI10 and ST36 were treated with EA at LI10 and ST36, respectively. This intervention was continued for 7 days. Subsequently, we evaluated the morphological changes in the gastric and duodenal mucosa, and specific indices were measured, including the contents of serum dopamine (DA), the trefoil factor (TFF), and the vasoactive intestinal peptide (VIP). In addition, the gastric and duodenal microbiota were assessed via 16S ribosomal DNA sequencing. The results indicated that EA at LI10 or ST36 significantly reduced the injury of the gastroduodenal mucosa in PUD mice. The gastric microbial community structure of the groups LI10 and ST36 was similar to that of the NC group following comparison with the microbial community structure of the PUD model group. Moreover, the abundance of Firmicutes in the stomach was decreased, whereas that of Bacteroidetes was increased, and the abundance of Firmicutes in the duodenum was decreased. Furthermore, the microbial diversity and richness of the gastric microbiota in group LI10 were also significantly increased, and the serum dopamine and trefoil factor levels in group ST36 were significantly increased. Therefore, it is suggested that EA ameliorating PUD is in association with improving the levels of DA and TFF and regulating the relative abundances of Firmicutes and Bacteroidetes in the gastric microbiota

    Erbium-doped WS2_2 with Down- and Up-Conversion Photoluminescence Integrated on Silicon for Heterojunction Infrared Photodetection

    Full text link
    The integration of 2D nanomaterials with silicon is expected to enrich the applications of 2D functional nanomaterials and to pave the way for next-generation, nanoscale optoelectronics with enhanced performances. Herein, a strategy for rare earth element doping has been utilized for the synthesis of 2D WS2_2:Er nanosheets to achieve up-conversion and down-conversion emission ranging from visible to the near-infrared region. Moreover, the potential integration of the synthesized 2D nanosheets in silicon platforms is demonstrated by the realization of an infrared photodetector based on a WS2_2:Er/Si heterojunction. These devices operate at room temperature and show a high photoresponsivity of ~39.8 mA/W (at 980 nm) and a detectivity of 2.79 ×\times 1010^{10} cm Hz1/2^{1/2} W−1^{-1}. Moreover, the dark current and noise power density are suppressed effectively by van der Waals assisted p-n heterojunction. This work fundamentally contributes to establishing infrared detection by rare element doping of 2D materials in heterojunctions with Si, at the forefront of infrared 2D materials-based photonics.Comment: 34 pages, 9 Figures, Advanced Materials Interfaces, 202

    Substrate Temperature Effect on the Microstructure and Properties of (Si, Al)/a-C:H Films Prepared through Magnetron Sputtering Deposition

    Get PDF
    Hydrogenated amorphous carbon films codoped with Si and Al ((Si, Al)/a-C:H) were deposited through radio frequency (RF, 13.56 MHz) magnetron sputtering on Si (100) substrate at different temperatures. The composition and structure of the films were investigated by means of X-ray photoelectron spectroscopy (XPS), TEM, and Raman spectra, respectively. The substrate temperature effect on microstructure and mechanical and tribological properties of the films was studied. A structural transition of the films from nanoparticle containing to fullerene-like was observed. Correspondingly, the mechanical properties of the films also had obvious transition. The tribological results in ambient air showed that high substrate temperature (>573 K) was disadvantage of wear resistance of the films albeit in favor of formation of ordering carbon clusters. Particularly, the film deposited at temperature of 423 K had an ultralow friction coefficient of about 0.01 and high wear resistance

    Theoretical analysis of the Influence of workpiece spindle vibration displacement on machining accuracy of gear hobbing machine

    Get PDF
    In order to study the vibration characteristics of the workpiece spindle of a gear hobbing machine, this paper established a mathematical model for the workpiece spindle vibration displacement in the x-axis direction. To verify the reliability of the proposed model, a series of experiments were run on the CNC gear hobbing machine. The relative error between the experimental data and the calculated values was lower than 5 %, which proves that our proposed mathematical model is qualified to be a research tool for the investigation of the variation law of the workpiece spindle. According to the analysis results, the workpiece spindle vibration displacement literally decreases with the increasing order, and the hobbing process with high hob revolution speed and small cutting depth is preferable for gear hobbing accuracy

    Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan

    Get PDF
    The origin of ctenophores (comb jellies) is obscured by their controversial phylogenetic position, with recent phylogenomic analyses resolving either sponges or ctenophores as the sister group of all other animals. Fossil taxa can provide morphological evidence that may elucidate the origins of derived characters and shared ancestries among divergent taxa, providing a means to “break” long branches in phylogenetic trees. Here we describe new fossil material from the early Cambrian Chengjiang Biota, Yunnan Province, China, including the putative cnidarian Xianguangia, the new taxon Daihua sanqiong gen et sp. nov., and Dinomischus venustus, informally referred to as “dinomischids” here. “Dinomischids” possess a basal calyx encircled by 18 tentacles that surround the mouth. The tentacles carry pinnules, each with a row of stiff filamentous structures interpreted as very large compound cilia of a size otherwise only known in ctenophores. Together with the Cambrian tulip animal Siphusauctum and the armored Cambrian scleroctenophores, they exhibit anatomies that trace ctenophores to a sessile, polypoid stem lineage. This body plan resembles the polypoid, tentaculate morphology of cnidarians, including a blind gastric cavity partitioned by mesenteries. We propose that comb rows are derived from tentacles with paired sets of pinnules that each bear a row of compound cilia. The scleroctenophores exhibit paired comb rows, also observed in Siphusauctum, in addition to an organic skeleton, shared as well by Dinomischus, Daihua, and Xianguangia. We formulate a hypothesis in which ctenophores evolved from sessile, polypoid suspension feeders, sharing similarities with cnidarians that suggest either a close relationship between these two phyla, a striking pattern of early convergent evolution, or an ancestral condition for either metazoans or eumetazoans

    Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2

    Get PDF
    Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise single electron oxygen reduction reaction (ORR) for Au and SnO2 modified TiO2 photocatalysts. We demonstrate that it is feasible to enhance H2O2 formation and suppress H2O2 decomposition by surface passivation of the H2O2-decomposition-sensitive photocatalysts

    Unity integration of grating slot waveguide and microfluid for terahertz sensing

    Get PDF
    Refractive index sensing is attracting extensive interest. Limited by the weak light–matter interaction and the broad bandwidth of resonance, the figure of merit (FoM) of terahertz (THz) sensors is much lower than their counterparts in visible and infrared regions. Here, these two issues are addressed by incorporating a microfluidic channel as a slot layer into a grating slot waveguide (GSW), where guided‐mode resonance results in a narrowband resonant peak and the sensitivity increases remarkably due to the greatly concentrated electromagnetic fields in the slot layer. Both reflective and transmissive sensors are developed with the calculated quality (Q) factors two orders of magnitude larger than metamaterial and plasmonic sensors, and the sensitivities one order of magnitude larger than grating waveguide sensors, contributing to a record high FoM of 692. The measured results match well with the simulations considering the fabrication errors, where the degeneration of narrowband transmission peaks in experiments is attributed to the error of the microfluidic channel height and the divergence of the incident beam. The proposed unity‐integrating configuration with simultaneous optimizations of the resonance mechanism, and the spatial overlap between the sensing field and the analytes shows the potential for high sensitivity bio and chemo sensing
    • 

    corecore