42 research outputs found

    Techno-Economic Analysis of Biogas Production from Microalgae through Anaerobic Digestion

    Get PDF
    Microalgae are a promising feedstock for bioenergy due to higher productivity, flexible growing conditions, and high lipid/polysaccharide content compared to terrestrial biomass. Microalgae can be converted to biogas through anaerobic digestion (AD). AD is a mature technology with a high energy return on energy invested. Microalgae AD can bypass energy intensive dewatering operations that are associated with liquid fuel production from algae. A techno-economic assessment of the commercial feasibility of algae-based biogas production was conducted using Cyanothece BG0011 biomass as an example. BG0011 is a naturally occurring, saline cyanobacterium isolated from Florida Keys. It fixes atmospheric nitrogen and produces exopolysaccharide (EPS). Maximum cell density and EPS concentration of 2.7 and 2.1 g afdw1/L (for total algae biomass concentration of 4.8 g afdw/L) were obtained by air sparging. For an areal cell and EPS productivity of 12.4 and 9.6 g afdw/m2/day, respectively, the biomethane production cost was 14.8 /MMBtuusingcoveredanaerobiclagoonandhighpressurewaterscrubbingforbiogaspurification.Electricityproductionfrombiogascosts13cents/kwh.Ifarealproductivitywasincreasedby33/MMBtu using covered anaerobic lagoon and high-pressure water scrubbing for biogas purification. Electricity production from biogas costs 13 cents/kwh. If areal productivity was increased by 33% from the same system, by sparging air enriched with 1% CO2, then biomethane cost was reduced to 12.16 /MMBtu and electricity cost to 11 cents/kwh

    Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Get PDF
    Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP) has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola). Results In this study, we identified over 23,000 simple sequence repeats (SSRs) from 536 sequenced BACs. 890 SSR markers (designated as BrGMS) were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH). Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs), 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species

    Down-Regulation of microRNA-26a Promotes Mouse Hepatocyte Proliferation during Liver Regeneration

    Get PDF
    BACKGROUND: Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+) cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. CONCLUSIONS/SIGNIFICANCE: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR

    PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties

    No full text
    In this paper, 4,4′-diaminodiphenyl ether and 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether are selected for molecular structure design, and PAI materials are synthesized by acyl chloride method. 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether has the same main chain structure as 4,4′-diaminodiphenyl ether, but the side chain contains two trifluoromethyl groups, which has high fluorine content. PAI terpolymers were prepared by compounding two diamine monomers, and the effects of trifluoromethyl on heat resistance, friction and wear properties, hydrophobic properties and mechanical properties of PAI materials were studied. The results showed that with the increase of trifluoromethyl content, the Tg of PAI material first increased and then changed little, and the Td5% would decrease and the tensile properties would also decrease. The wear mechanism of PAI varied with the content of trifluoromethyl. With the increase of the amount of fluorinated diamine monomer, the adhesive wear degree of PAI materials gradually increased, and reached the maximum when the molar ratio of the two monomers was 5:5, and then decreased gradually. Different trifluoromethyl content had little effect on friction coefficient, and the friction coefficient increased slightly when the molar ratio of 4,4′-diaminodiphenyl ether to 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether is 1:9. With the increase of trifluoromethyl content, the wear of PAI material would increase. With the increase of the amount of trifluoromethyl, the water absorption of PAI material decreased and the water contact angle increased, which indicated that the hydrophobic property of PAI material was improved. To sum up, the results of this study showed that the introduction of trifluoromethyl into the side chain provided an effective way to prepare PAI materials with low water absorption. Considering the comprehensive properties such as heat resistance, friction and wear, tensile properties, etc., the appropriate addition amount is 10–30%

    The role of miR-485-5p/NUDT1 axis in gastric cancer

    No full text
    Abstract Background Cancers can survive the oxidative conditions by upregulating nucleoside diphosphate linked moiety X-type motif 1 (NUDT1). However, the mechanisms underlying gastric carcinogenesis and the dys-regulation of NUDT1 in gastric cancer (GC) remain unknown. Our study aimed to explore the role of NUDT1 and its regulatory pathway by miR-485-5p in GC. Methods Gastric cancer tissues and paired noncancerous tissue samples were collected, and the expression level of NUDT1 and miR-485-5p were detected. Two cohorts from The Cancer Genome Atlas (TCGA) database and another cohort from the Tianjin Medical University Cancer Institute and Hospital were further analyzed. Luciferase assays were performed, and the effects of the miR-485-5p/NUDT1 axis on GC cells and normal gastric cells were determined by subsequent experiments. Results We found that the expression of miR-485-5p was clearly repressed in GC tissues, while NUDT1 expression level was dramatically increased. The overexpression of NUDT1 correlated closely with an increase in invasive depth and a decrease in survival in GC patients. MiR-485-5p could directly bind to the 3′UTR of NUDT1 mRNA and induce its degradation, thus down-regulate its expression. The miR-485-5p/NUDT1 axis could lead to the changes of 8-oxo-dG in GC cells. And the increased expression of NUDT1 resulting from the downregulation of miR-485-5p could accelerate cell proliferation and metastasis in GC. However, the growth and migration of normal gastric cells did not depend on the protection of NUDT1, while the overexpression of NUDT1 could promote malignant transition in normal gastric cells. Conclusions MiR-485-5p acts as a tumor suppressor by targeting NUDT1 in GC. The miR-485-5p/NUDT1 axis is involved in the processes of cell growth and cell motility and plays a key role in the tumorigenesis of GC

    Epitope identification for p53R273C mutant

    No full text
    Abstract Background With the rise of immunotherapy based on cancer neoantigen, identification of neoepitopes has become an urgent problem to be solved. The TP53 R273C mutation is one of the hotspot mutations of TP53, however, the immunogenicity of this mutation is not yet clear. The aim of this study is to identify potential epitopes for p53R273C mutant. Methods In this study, bioinformatic methods, peptide exchange assay, and peptide‐immunized human leukocyte antigen (HLA) transgenic mouse model were used to explore the immunogenicity of this mutation. Results Peptides with higher affinity to common HLA‐A alleles (A*11:01, A*02:01) were discovered by computational prediction. All the 8–11 mer peptides contain the mutation site were synthesized and soluble peptides were used in the peptide exchange assay. However, the exchange efficiencies of these predicted peptides to HLAs were lower. Fortunately, other peptides with higher exchange efficiency were discovered. Then, the immunogenicity of these peptides was validated with the HLA‐A2 transgenic mice model. Conclusion We identified three potential neoepitopes of p53R273C for HLA‐A*02:01, one potential neoepitope for HLA‐A*11:01 and no neoepitope for HLA‐A*24:02
    corecore