83 research outputs found

    Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking

    Get PDF
    Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40–500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies

    Scenario for Ultrarelativistic Nuclear Collisions: Space--Time Picture of Quantum Fluctuations and the Birth of QGP

    Get PDF
    We study the dynamics of quantum fluctuations which take place at the earliest stage of high-energy processes and the conditions under which the data from e-p deep-inelastic scattering may serve as an input for computing the initial data for heavy-ion collisions at high energies. Our method is essentially based on the space-time picture of these seemingly different phenomena. We prove that the ultra-violet renormalization of the virtual loops does not bring any scale into the problem. The scale appears only in connection with the collinear cut-off in the evolution equations and is defined by the physical properties of the final state. In heavy-ion collisions the basic screening effect is due to the mass of the collective modes (plasmons) in the dense non-equilibrium quark-gluon system, which is estimated. We avoid the standard parton phenomenology and suggest a dedicated class of evolution equations which describe the dynamics of quantum fluctuations in heavy-ion collisions.Comment: 54 pages, 11 Postscript figures, uses RevTe

    Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Get PDF
    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs

    Density of Gr1-positive myeloid precursor cells, p-STAT3 expression and gene expression pattern in canine mammary cancer metastasis

    Get PDF
    The very recent studies on human and mice models have indicated an important role of myeloid precursor cells (progenitors or not fully differentiated cells that express the Gr1 antigen also called Gr1-positive myeloid suppressor cells) in the tumor progression and metastasis. They are thought to suppress the immune system and promote angiogenesis via Signal transducer and activator of transcription 3 (STAT3) activation. As of now there is no data available on the correlation of Gr1-positive cell number, phosphorylated STAT3 (p-STAT3) expression and cancer ability to metastasis. Thus, we counted the myeloid precursor cell number and analyzed p-STAT3 expression in 50 canine mammary tumors that gave local/distant metastases and did not metastasize. We showed that the number of Gr1-positive cells and p-STAT3 expression are significantly higher (p < 0.001) in the metastatic tumors than in the non-metastatic ones. We also observed higher expression of p-STAT3 in the canine mammary cancer cell lines with metastatic potential than in other cell lines (p < 0.001). Moreover, the number of myeloid precursors and p-STAT3 expression in metastatic tumors correlate strongly. The tumor infiltrating myeloid precursor cells may invigorate the STAT3 activity (probably via vascular endothelial growth factor – VEGF) that contributes to the tumor angiogenesis and furthermore tumor`s ability to metastasize. The analysis of gene expression in canine mammary cancer cell lines with metastatic potential indicated that semaphorin 3B (SEMA3B) and neuropilin receptors (NRP) may also be important elements in this process. Thus, we discuss the possible interactions within the tumor that may be required for cancer metastatis

    Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Get PDF
    BACKGROUND: Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. METHODS: The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. RESULTS: Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. CONCLUSION: This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth reduction was dependent upon the molecular signatures of the cell lines. Since RRR-γ-tocopherol is effective at inhibition of cell proliferation at both physiological and pharmacological concentrations dietary RRR-γ-tocopherol may be chemopreventive, while pharmacological concentrations of RRR-γ-tocopherol may aid chemotherapy without toxic effects to normal cells demonstrated by most chemotherapeutic agents

    The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    Get PDF
    BACKGROUND: Histone deacetylase inhibitors (HDACIs) induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA) on primary T cells. METHODS: To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. RESULTS: We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G(1 )phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC) plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS) scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. CONCLUSIONS: Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders

    Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy

    Get PDF
    Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects

    Tocopherols and the Treatment of Colon Cancer

    No full text
    Colorectal cancer is the second most common cause of cancer deaths in the United States. Vitamin E (VE) and other antioxidants may help prevent colon cancer by decreasing the formation of mutagens arising from the free radical oxidation of fecal lipids or by non-antioxidant mechanisms. VE is not a single molecule, but refers to at least eight different molecules, that is, four tocopherols and four tocotrienols. Methods: Both animal models and human colon cancer cell lines were used to evaluate the chemopreventive potential of different forms of VE. Rats were fed diets deficient in tocopherols or supplemented with either α-tocopherol or γ-tocopherol. Half the rats in each of these groups received normal levels of dietary Fe and the other half Fe at eight times the normal level. In our cell experiments, we looked at the role of γ-tocopherol in upregulating peroxisome proliferator-activated receptor-γ (PPAR-γ) in the SW 480 human cell line. Results: Rats fed the diets supplemented with α-tocopherol had higher levels of VE in feces, colonocytes, plasma, and liver than did rats fed diets supplemented with γ-tocopherol. Dietary Fe levels did not influence tocopherol levels in plasma, liver, or feces. For colonocytes, high dietary Fe decreased tocopherol levels. Rats fed the γ-tocopherol-supplemented diets had lower levels of fecal lipid hydroperoxides than rats fed the α-tocopherol-supplemented diets. Ras-p21 levels were significantly lower in rats fed the γ-tocopherol-supplemented diets compared with rats fed the α-tocopherol-supplemented diets. High levels of dietary Fe were found to promote oxidative stress in feces and colonocytes. Our data with the SW480 cells suggest that both α- and γ-tocopherol upregulate PPAR-γ mRNA and protein expression, γ-tocopherol was, however, found to be a better enhancer of PPAR-γ expression than α-tocopherol at the concentrations tested

    The annexin V/propidium iodide double staining assay following 100 μM tocopherol treatment in HCT-116 cells (Panels A-D) for 24 hours and SW480 (Panels E-H) cells for 70 hours

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines"</p><p>BMC Cancer 2006;6():13-13.</p><p>Published online 17 Jan 2006</p><p>PMCID:PMC1379650.</p><p>Copyright © 2006 Campbell et al; licensee BioMed Central Ltd.</p> These data show RRR-γ-tocopherol is superior to RRR-α-tocopherol at inducing apoptosis. The percentages in right quadrants represent percentage apoptosis over the blank and are an average of at least two independent trials
    corecore