3,670 research outputs found

    Magnetization plateau and incommensurate spin modulation in Ca3Co2O6

    Full text link
    The magnetic properties of a trigonal prism unit of the spin-2 frustrated compound Ca3Co2O6 are studied by means of the density-matrix renormalization group method. A magnetization plateau at ms/3ms/3 (msms is the saturation magnetization) with ferrimagnetic structure is observed. By fitting the experimental data of magnetic curve, an estimation of the couplings gives J1=-26.84K, J_{2}=0.39K, and J_{3}=0.52K. The local magnetic moments are unveiled to exhibit an incommensurate sinusoidally modulation along the three chains of the trigonal prism, which gives a strong theoretical support to the experimentally observed incommensurate partially disordered antiferromagnetic state for Ca3Co2O6. The present result suggests that the modulation indeed originates from the competition of antiferromagnetic and ferromagnetic couplings.Comment: 4 pages, 4 figures, accepted by Appl. Phys. Lett

    Quantum Phase Transition, O(3) Universality Class and Phase Diagram of Spin-1/2 Heisenberg Antiferromagnet on Distorted Honeycomb Lattice: A Tensor Renormalization Group Study

    Full text link
    The spin-1/2 Heisenberg antiferromagnet on the distorted honeycomb (DHC) lattice is studied by means of the tensor renormalization group method. It is unveiled that the system has a quantum phase transition of second-order between the gapped quantum dimer phase and a collinear Neel phase at the critical point of coupling ratio \alpha_{c} = 0.54, where the quantum critical exponents \nu = 0.69(2) and \gamma = 1.363(8) are obtained. The quantum criticality is found to fall into the O(3) universality class. A ground-state phase diagram in the field-coupling ratio plane is proposed, where the phases such as the dimer, semi-classical Neel, and polarized phases are identified. A link between the present spin system to the boson Hubbard model on the DHC lattice is also discussed.Comment: 6 pages, 5 figures, published in Phys. Rev.

    Phase transitions and thermodynamics of the two-dimensional Ising model on a distorted Kagom\'{e} lattice

    Full text link
    The two-dimensional Ising model on a distorted Kagom\'{e} lattice is studied by means of exact solutions and the tensor renormalisation group (TRG) method. The zero-field phase diagrams are obtained, where three phases such as ferromagnetic, ferrimagnetic and paramagnetic phases, along with the second-order phase transitions, have been identified. The TRG results are quite accurate and reliable in comparison to the exact solutions. In a magnetic field, the magnetization (mm), susceptibility and specific heat are studied by the TRG algorithm, where the m=1/3m=1/3 plateaux are observed in the magnetization curves for some couplings. The experimental data of susceptibility for the complex Co(N3_3)2_2(bpg)⋅\cdot DMF4/3_{4/3} are fitted with the TRG results, giving the couplings of the complex J=22KJ=22K and J′=33KJ'=33K

    Linearized Tensor Renormalization Group Algorithm for Thermodynamics of Quantum Lattice Models

    Full text link
    A linearized tensor renormalization group (LTRG) algorithm is proposed to calculate the thermodynamic properties of one-dimensional quantum lattice models, that is incorporated with the infinite time-evolving block decimation technique, and allows for treating directly the two-dimensional transfer-matrix tensor network. To illustrate its feasibility, the thermodynamic quantities of the quantum XY spin chain are calculated accurately by the LTRG, and the precision is shown to be comparable with (even better than) the transfer matrix renormalization group (TMRG) method. Unlike the TMRG scheme that can only deal with the infinite chains, the present LTRG algorithm could treat both finite and infinite systems, and may be readily extended to boson and fermion quantum lattice models.Comment: published versio
    • …
    corecore