104 research outputs found
Mechanisms of drug-induced liver injury: the role of hepatic transport proteins
The objectives of this research were to investigate mechanisms of drug-induced liver injury (DILI) that involve drug-bile acid (BA) interactions at hepatic transporters, and develop a novel strategy to reliably predict human DILI. Troglitazone (TGZ), an antidiabetic withdrawn from the market due to severe DILI, was employed as a model hepatotoxic drug. Pharmacokinetic modeling of taurocholic acid (TCA, a model BA) disposition data from human and rat sandwich-cultured hepatocytes (SCH) revealed that species differences exist in TCA hepatocellular efflux pathways; in human SCH, TCA biliary excretion predominated, whereas biliary and basolateral excretion contributed equally to TCA efflux in rat SCH. This finding explains, in part, why rats are less susceptible to DILI compared to humans after administration of drugs that inhibit BA biliary excretion. The present study also revealed for the first time that TGZ sulfate (TS), a major TGZ metabolite, inhibits BA basolateral efflux in addition to biliary excretion. These findings support the hypothesis that TS is an important mediator of altered hepatic BA disposition; increased hepatic TS exposure due to impaired canalicular transport function might predispose a subset of patients to hepatotoxicity. A novel in vitro model system, rat SCH lacking selected canalicular transporters [breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2)] was established to test this hypothesis; biliary excretion of hepatically-generated TS was not significantly altered, suggesting that alternate transporters can excrete TS into bile, and loss of Bcrp and/or Mrp2 function would not necessarily be risk factors for increased hepatocellular TS accumulation in rats. To translate experimental data to in vivo humans, a mechanistic model that incorporated TGZ/TS disposition, BA physiology/pathophysiology, hepatocyte life cycle, and liver injury biomarkers was developed; intracellular BA concentrations and toxicity measured in SCH were used to link BA homeostasis and hepatotoxicity. This mechanistic model adequately predicted the incidence, delayed presentation, and species differences in TGZ hepatotoxicity. This dissertation research revealed a number of important and novel findings that improve our understanding about mechanisms underlying BA-mediated DILI, and establish a framework to integrate biological information and experimental data to evaluate DILI mechanisms and predict hepatotoxic potential of chemical entities.Doctor of Philosoph
Vesicular glutamatergic transmission in noise-induced loss and repair of cochlear ribbon synapses
Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3
An updated review on drug-induced cholestasis: Mechanisms and investigation of physicochemical properties and pharmacokinetic parameters
Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.g. bile acid transporter inhibition) or indirect (e.g. activation of nuclear receptors, altered function/expression of bile acid transporters) processes. Mechanistic information about the effects of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a compound, but experimental data often are not available. The relationship between physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export pump (BSEP) among seventy-seven cholestatic drugs with different pathophysiological mechanisms of cholestasis (i.e. impaired formation of bile vs. physical obstruction of bile flow) was investigated. The utility of in silico models to obtain mechanistic information about the impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of drugs is highlighted
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be employed to construct physiologically-based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been employed to study cytotoxicity and perturbation of biological processes by drugs and hepatically-generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model was used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction
An Experimental Approach To Evaluate the Impact of Impaired Transport Function on Hepatobiliary Drug Disposition Using Mrp2-Deficient TR – Rat Sandwich-Cultured Hepatocytes in Combination with Bcrp Knockdown
Breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) are members of the ATP binding cassette (ABC) transporter family located in the canalicular membrane of hepatocytes that mediate biliary excretion of many drugs and endogenous compounds. BCRP and MRP2 have overlapping substrate profiles. Predicting drug disposition in the setting of altered transport function has important clinical significance. This investigation was designed to establish an in vitro model system to evaluate the impact of impaired Mrp2 and Bcrp function on hepatobiliary drug disposition. To achieve Bcrp knockdown by RNA interference (RNAi), sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR–) and wild-type (WT) rats were infected with adenoviral vectors to express shRNA targeting Bcrp (Ad-siBcrp) at multiplicity of infection (MOI) of 1–10. MOI of 5 was identified as optimal. At MOI of 5, viral infection as well as WT or TR– status was statistically significant predictors of the rosuvastatin (RSV) biliary excretion index (BEI), consistent with the known role of Bcrp and Mrp2 in the biliary excretion of RSV in vivo in rats. Relative to WT rat SCH, marginal mean BEI (%) of RSV in TR– rat SCH decreased by 28.6 (95% CI: 5.8–51.3). Ad-siBcrp decreased marginal mean BEI (%) of RSV by 13.3 (7.5–9.1) relative to SCH infected with adenoviral vectors expressing a nontargeting shRNA (Ad-siNT). The BEI of RSV was almost ablated in TR– rat SCH with Bcrp knockdown (5.9 ± 3.0%) compared to Ad-siNT-infected WT rat SCH (45.4 ± 6.6%). These results demonstrated the feasibility of Bcrp knockdown in TR– rat SCH as an in vitro system to assess the impact of impaired Bcrp and Mrp2 function. At MOI of 5, viral infection had minimal effects on RSV total accumulation, but significantly decreased marginal mean taurocholate total accumulation (pmol/mg of protein) and BEI (%) by 9.9 (7.0–12.8) and 7.5 (3.7–11.3), respectively, relative to noninfected SCH. These findings may be due to off-target effects on hepatic bile acid transporters, even though no changes in protein expression levels of the hepatic bile acid transporters were observed. This study established a strategy for optimization of the knockdown system, and demonstrated the potential use of RNAi in SCH as an in vitro tool to predict altered hepatobiliary drug disposition when canalicular transporters are impaired
Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development
For longitudinal studies with multivariate observations, we propose statistical methods to identify clusters of archetypal subjects by using techniques from functional data analysis and to relate longitudinal patterns to outcomes. We demonstrate how this approach can be applied to examine associations between multiple time-varying exposures and subsequent health outcomes, where the former are recorded sparsely and irregularly in time, with emphasis on the utility of multiple longitudinal observations in the framework of dimension reduction techniques. In applications to children's growth data, we investigate archetypes of infant growth patterns and identify subgroups that are related to cognitive development in childhood. Specifically, "Stunting" and "Faltering" time-dynamic patterns of head circumference, body length and weight in the first 12 months are associated with lower levels of long-term cognitive development in comparison to "Generally Large" and "Catch-up" growth. Our findings provide evidence for the statistical association between multivariate growth patterns in infancy and long-term cognitive development
Fluctuation Study of the Specific Heat of MgB2
The specific heat of polycrystalline MgB has been measured with
high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The
excess specific heat above T is discussed in terms of Gaussian
fluctuations and suggests that MgB is a bulk superconductor with
Ginzburg-Landau coherence length \AA . The transition-width
broadening in field is treated in terms of lowest-Landau-level (LLL)
fluctuations. That analysis requires that \AA . The underestimate
of the coherence length in field, along with deviations from 3D LLL
predictions, suggest that there is an influence from the anisotropy of B
between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002
- …