1,305 research outputs found

    Graduate Student Reflections on Mentorship in a Training and Outreach Program for Families of Children with Autism Spectrum Disorder

    Get PDF
    Undergraduate (n = 19) and graduate students (n = 8) participated in a two semester training program focused on learning about Autism Spectrum Disorder (ASD) and how to create individualized communication supports for families of children with ASD. The focus of this paper is on the graduate students’ training and mentoring experiences. Graduate students’ philosophies of mentoring undergraduate students and their final reflections of the experience were analyzed for themes and subthemes. Mentoring philosophies yielded four major themes: role of the mentor, mentoring goals, the mentor-mentee relationship, and learning. Graduate student reflections on their skills gained, what they learned about themselves, their leadership, and the challenges they faced were also categorized into themes. Analyses revealed undergraduate student ratings and qualitative comments regarding graduate student support. Implications and future directions for the development of hands-on training programs allowing graduate students in Communication Sciences and Disorders to assume mentorship roles will be discussed

    Cell-Cycle Protein Expression in a Population-Based Study of Ovarian and Endometrial Cancers

    Get PDF
    Aberrant expression of cyclin-dependent kinase (CDK) inhibitors is implicated in the carcinogenesis of many cancers, including ovarian and endometrial cancers. We examined associations between CDK inhibitor expression, cancer risk factors, tumor characteristics, and survival outcomes among ovarian and endometrial cancer patients enrolled in a population-based case control study. Expression (negative vs. positive) of three CDK inhibitors (p16, p21, p27) and ki67 was examined with immunohistochemical staining of tissue microarrays. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarkers, risk factors, and tumor characteristics. Survival outcomes were available for ovarian cancer patients and examined using Kaplan-Meier plots and Cox proportional hazards regression. Among ovarian cancer patients (n=175), positive p21 expression was associated with endometrioid tumors (OR=12.22, 95% CI=1.45-102.78) and higher overall survival (log-rank p=0.002). In Cox models adjusted for stage, grade, and histology, the association between p21 expression and overall survival was borderline significant (hazard ratio=0.65, 95% CI=0.42-1.05). Among endometrial cancer patients (n=289), positive p21 expression was inversely associated with age (OR ≥ 65 years of age=0.25, 95% CI=0.07-0.84) and current smoking status (OR: 0.33, 95% CI 0.15, 0.72) compared to negative expression. Our study showed heterogeneity in expression of cell-cycle proteins associated with risk factors and tumor characteristics of gynecologic cancers. Future studies to assess these markers of etiological classification and behavior may be warranted

    DNMT3B PWWP mutations cause hypermethylation of heterochromatin

    Get PDF
    The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1 and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3 marked heterochromatin in a PWWP-independent mannerthat is facilitated by the protein’s N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome

    Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump

    Get PDF
    The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted

    Murine factor H co-produced in yeast with protein disulfide isomerase ameliorated C3 dysregulation in factor H-Deficient mice

    Get PDF
    Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen

    Endemicity of Zoonotic Diseases in Pigs and Humans in Lowland and Upland Lao PDR: Identification of Socio-cultural Risk Factors

    Get PDF
    In Lao People's Democratic Republic pigs are kept in close contact with families. Human risk of infection with pig zoonoses arises from direct contact and consumption of unsafe pig products. This cross-sectional study was conducted in Luang Prabang (north) and Savannakhet (central-south) Provinces. A total of 59 villages, 895 humans and 647 pigs were sampled and serologically tested for zoonotic pathogens including: hepatitis E virus (HEV), Japanese encephalitis virus (JEV) and Trichinella spiralis; In addition, human sera were tested for Taenia spp. and cysticercosis. Seroprevalence of zoonotic pathogens in humans was high for HEV (Luang Prabang: 48.6%, Savannakhet: 77.7%) and T. spiralis (Luang Prabang: 59.0%, Savannakhet: 40.5%), and lower for JEV (around 5%), Taenia spp. (around 3%) and cysticercosis (Luang Prabang: 6.1, Savannakhet 1.5%). Multiple correspondence analysis and hierarchical clustering of principal components was performed on descriptive data of human hygiene practices, contact with pigs and consumption of pork products. Three clusters were identified: Cluster 1 had low pig contact and good hygiene practices, but had higher risk of T. spiralis. Most people in cluster 2 were involved in pig slaughter (83.7%), handled raw meat or offal (99.4%) and consumed raw pigs' blood (76.4%). Compared to cluster 1, cluster 2 had increased odds of testing seropositive for HEV and JEV. Cluster 3 had the lowest sanitation access and had the highest risk of HEV, cysticercosis and Taenia spp. Farmers which kept their pigs tethered (as opposed to penned) and disposed of manure in water sources had 0.85 (95% CI: 0.18 to 0.91) and 2.39 (95% CI: 1.07 to 5.34) times the odds of having pigs test seropositive for HEV, respectively. The results have been used to identify entry-points for intervention and management strategies to reduce disease exposure in humans and pigs, informing control activities in a cysticercosis hyper-endemic village

    Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    Get PDF
    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis

    Quantification of Trace-Level DNA by Real-Time Whole Genome Amplification

    Get PDF
    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, −2.1%, and −13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA
    corecore