2,023 research outputs found
Memory usage verification using Hip/Sleek.
Embedded systems often come with constrained memory footprints. It is therefore essential to ensure that software running on such platforms fulfils memory usage specifications at compile-time, to prevent memory-related software failure after deployment. Previous proposals on memory usage verification are not satisfactory as they usually can only handle restricted subsets of programs, especially when shared mutable data structures are involved. In this paper, we propose a simple but novel solution. We instrument programs with explicit memory operations so that memory usage verification can be done along with the verification of other properties, using an automated verification system Hip/Sleek developed recently by Chin et al.[10,19]. The instrumentation can be done automatically and is proven sound with respect to an underlying semantics. One immediate benefit is that we do not need to develop from scratch a specific system for memory usage verification. Another benefit is that we can verify more programs, especially those involving shared mutable data structures, which previous systems failed to handle, as evidenced by our experimental results
The Large N Limits of the Chiral Potts Model
In this paper we study the large-N limits of the integrable N-state chiral
Potts model. Three chiral solutions of the star-triangle equations are derived,
with states taken from all integers, or from a finite or infinite real
interval. These solutions are expected to be chiral-field lattice deformations
of parafermionic conformal field theories. A new two-sided hypergeometric
identity is derived as a corollary.Comment: 41 pages, 3 figures, LaTeX 2E file, using elsart.cls and psbox.tex
(version 1.31 provided), [email protected]
Suppression of Superconducting Critical Current Density by Small Flux Jumps in Thin Films
By doing magnetization measurements during magnetic field sweeps on thin
films of the new superconductor , it is found that in a low temperature
and low field region small flux jumps are taking place. This effect strongly
suppresses the central magnetization peak leading to reduced nominal
superconducting critical current density at low temperatures. A borderline for
this effect to occur is determined on the field-temperature (H-T) phase
diagram. It is suggested that the small size of the flux jumps in films is due
to the higher density of small defects and the relatively easy thermal
diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200
Taiwan's 2020 election and its implications for the New Southbound Policy
For more about the East-West Center, see http://www.eastwestcenter.org/Michael Hsiao and Alan Yang, Distinguished Professor of International Relations at American University, explain that "The Taiwanese people firmly defended Taiwan's sovereignty and cherished democracy through free and open elections.
Microfluidic enzymatic reactors for proteome research
The field of proteomics has emerged as a valuable analytical tool for elucidating cellular and biological systems at the molecular level. As there is an ever-growing demand for new highly automated, high-throughput, and sensitive analytical tools, a key challenge is the characterization of low abundance proteins that are crucial in modulating biological functions of cells and may also be associated with a number of diseases. If the detection modes are mainly dominated by fluorescence spectroscopy and mass spectrometry, the recent advances in microfluidic techniques have the potential to meet the requirements for sample treatment and processing. Microfluidic devices can address the future analytical needs of increased throughput, lower sample and reagent consumption, smaller size, and lower operating costs. It has been found that microfluidic-based enzymatic reactors can carry out protein digestion with high efficiency to facilitate subsequent reliable protein identification by peptide mass fingerprinting. Compared to conventional digestion approaches, microfluidic enzymatic reactors can not only accelerate digestion rate but also reduce enzyme autolysis and, ultimately, achieve the purpose of repetitive utilization
Absence of a dose-rate effect in the transformation of C3H 10T1/2 cells by α-particles
The findings of Hill et al. (1984) on the greatly enhanced transformation frequencies at very low dose rates of fission neutrons induced us to perform an analogous study with -particles at comparable dose rates. Transformation frequencies were determined with γ-rays at high dose rate (0·5 Gy/min), and with -particles at high (0·2 Gy/min) and at low dose rates (0·83-2·5 mGy/min) in the C3H 10T1/2 cell system.
α-particles were substantially more effective than γ-rays, both for cell inactivation and for neoplastic transformation at high and low dose rates. The relative biological effectiveness (RBE) for cell inactivation and for neoplastic transformation was of similar magnitude, and ranged from about 3 at an -particle dose of 2 Gy to values of the order of 10 at 0·25 Gy. In contrast to the experiments of Hill et al. (1984) with fission neutrons, no increased transformation frequencies were observed when the -particle dose was protracted over several hours
Recommended from our members
Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada
The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for {delta}2!{sup 3}C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs
Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan
Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest?
Location: Subtropical northeast Taiwan.
Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35âyr C. japonica plantation and an adjacent natural hardwood forest.
Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shadeâtolerant and shadeâintolerant seedling individuals were also different between the two forest types with only one shadeâintolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth.
Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30âyr C. japonica plantation, possibly due to the increased dominance of shadeâintolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shadeâadapted understorey plants
Peptide ligands of the cardiac ryanodine receptor as super-resolution imaging probes
To study the structural basis of pathological remodelling and altered calcium channel functional states in the heart, we sought to re-purpose high-affinity ligands of the cardiac calcium channel, the ryanodine receptor (RyR2), into super-resolution imaging probes. Imperacalcin (IpCa), a scorpion toxin peptide which induces channel sub-conduction states, and DPc10, a synthetic peptide corresponding to a sequence of the RyR2, which replicates arrhythmogenic CPVT functional changes, were used in fluorescent imaging experiments.
Isolated adult rat ventricular cardiomyocytes were saponin-permeabilised and incubated with each peptide. IpCa-A546 became sequestered into the mitochondria. This was prevented by treatment of the permeabilised cells with the ionophore FCCP, revealing a striated staining pattern in confocal imaging which had weak colocalisation with RyR2 clusters. Poor specificity (as an RyR2 imaging probe) was confirmed at higher resolution with expansion microscopy (proExM) (~70 nm).
DPc10-FITC labelled a striated pattern, which had moderate colocalisation with RyR2 cluster labelling in confocal and proExM. There was also widespread non-target labelling of the Z-discs, intercalated discs, and nuclei, which was unaffected by incubation times or 10 mM caffeine. The inactive peptide mut-DPc10-FITC (which causes no functional effects) displayed a similar labelling pattern.
Significant labelling of structures unrelated to RyR2 by both peptide conjugates makes their use as highly specific imaging probes of RyR2 in living isolated cardiomyocytes highly challenging.
We investigated the native DPc10 sequence within the RyR2 structure to understand the domain interactions and proposed mechanism of peptide binding. The native DPc10 sequence does not directly interact with another domain, and but is downstream of one such domain interface. The rabbit Arg2475 (equivalent to human Arg2474, mutated in CPVT) in the native sequence is the most accessible portion and most likely location for peptide disturbance, suggesting FITC placement does not impact peptide binding
- âŠ