20 research outputs found

    Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry

    Get PDF
    Room temperature sodium-sulfur (RT-Na/S) batteries have recently regained a great deal of attention due to their high theoretical energy density and low cost, which make them promising candidates for application in large-scale energy storage, especially in stationary energy storage, such as with electrical grids. Research on this system is currently in its infancy, and it is encountering severe challenges in terms of low electroactivity, limited cycle life, and serious self-charging. Moreover, the reaction mechanism of S with Na ions varies with the electrolyte that is applied, and is very complicated and hard to detect due to the multi-step reactions and the formation of various polysulfides. Therefore, understanding the chemistry and optimizing the nanostructure of electrodes for RT-Na/S batteries are critical for their advancement and practical application in the future. In the present review, the electrochemical reactions between Na and S are reviewed, as well as recent progress on the crucial cathode materials. Furthermore, attention also is paid to electrolytes, separators, and cell configuration. Additionally, current challenges and future perspectives for the RT-Na/S batteries are discussed, and potential research directions toward improving RT-Na/S cells are proposed at the end

    Fabrication of graphene-like carbon films on 6H-SiC substrates via chlorination-annealing at low temperature

    No full text
    Graphene-like carbon films have been fabricated by annealing carbide-derived carbons on 6H-SiC (0001¯) at lower temperature in Ar ambience. Those films show a moderate interaction with substrates and an ordered stacking along c-axis and exhibit the same Raman spectra as that of epitaxial graphene on SiC. This carbon film growth process developed here will provide a new approach to obtain graphene epitaxially grown on SiC substrate at lower cost compared with the traditional access

    Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes

    Get PDF
    Silicon has a high theoretical capacity, still limits its application on Si-based anodes due to the problems of low electric conductivity, large volume change, continuous formation of unstable solid electrolyte interphase layer, and easy fracture during lithiation and delithiation process. Despite various carbon coating approaches are developed to fabricate carbon coated silicon core-shell and yolk-shell nanocomposites with improved electrochemical performance, the challenges including poor long-term cyclability, low Si mass ratio, and scalability remains. To overcome these challenges, we design an interfacial microporous carbon coating strategy on silicon nanoparticles to form homogeneous coaxial core-shell nanostructures. This synthesis sol-gel approach is simple, easy to scale up, and direct growth phenolic resins on the surface with uniform and controllable thickness. Additionally, the fabricated carbon layers form the microporous structures and phenolic resin frameworks, thus enabling the fast lithium ion transport and formation of stable solid electrolyte interphase film. By finely controlling the thickness of this phenolic resin-based carbon of 10 nm, excellent protection of silicon nanoparticles as well as high electrochemical performance are achieved, delivering a high capacity of 1006 mA h g−1 and Coulombic efficiency of \u3e99.5% after 500 times at a current density of 500 mA g−1

    Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries

    Get PDF
    Silicon as an electrode suffers from short cycling life, as well as unsatisfactory rate-capability caused by the large volume expansion (~400%) and the consequent structural degradation during lithiation/delithiation processes. Here, we have engineered unique void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures. In this design, the silicon NPs yolk are wrapped into open and accessible mesoporous carbon shells, the void space between yolk and shell provides enough room for Si expansion, meanwhile, the porosity of carbon shell enables fast transport of Li+ ions between electrolyte and silicon. Our ex-situ characterization clearly reveals for the first time that a favorable homogeneous and compact solid electrolyte interphase (SEI) film is formed along the mesoporous carbon shells. As a result, such yolk-shell Si@mesoporous-carbon nanoparticles with a large void exhibits long cycling stability (78.6% capacity retention as long as 400 cycles), and superior rate-capability (62.3% capacity retention at a very high current density of 8.4Ag-1)

    Core–Shell Eudragit S100 Nanofibers Prepared via Triaxial Electrospinning to Provide a Colon-Targeted Extended Drug Release

    No full text
    In this study, a new modified triaxial electrospinning is implemented to generate an Eudragit S100 (ES100)-based core–shell structural nanofiber (CSF), which is loaded with aspirin. The CSFs have a straight line morphology with a smooth surface, an estimated average diameter of 740 ± 110 nm, and a clear core–shell structure with a shell thickness of 65 nm, as disclosed by the scanning electron microscopy and transmission electron microscopy results. Compared to the monolithic composite nanofibers (MCFs) produced using traditional blended single-fluid electrospinning, aspirin presented in both of them amorously owing to their good compatibility. The CSFs showed considerable advantages over the MCFs in providing the desired drug-controlled-release profiles, although both of them released the drug in an erosion mechanism. The former furnished a longer time period of time-delayed-release and a smaller portion released during the first two-hour acid condition for protecting the stomach membranes, and also showed a longer time period of aspirin-extended-release for avoiding possible drug overdose. The present protocols provide a polymer-based process-nanostructure-performance relationship to optimize the reasonable delivery of aspirin

    Room‐Temperature Sodium‐Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry

    No full text
    Room temperature sodium-sulfur (RT-Na/S) batteries have recently regained a great deal of attention due to their high theoretical energy density and low cost, which make them promising candidates for application in large-scale energy storage, especially in stationary energy storage, such as with electrical grids. Research on this system is currently in its infancy, and it is encountering severe challenges in terms of low electroactivity, limited cycle life, and serious self-charging. Moreover, the reaction mechanism of S with Na ions varies with the electrolyte that is applied, and is very complicated and hard to detect due to the multi-step reactions and the formation of various polysulfides. Therefore, understanding the chemistry and optimizing the nanostructure of electrodes for RT-Na/S batteries are critical for their advancement and practical application in the future. In the present review, the electrochemical reactions between Na and S are reviewed, as well as recent progress on the crucial cathode materials. Furthermore, attention also is paid to electrolytes, separators, and cell configuration. Additionally, current challenges and future perspectives for the RT-Na/S batteries are discussed, and potential research directions toward improving RT-Na/S cells are proposed at the end

    Early Cretaceous Xiuyan adakitic granitoids in the Liaodong Peninsula, eastern China: petrogenesis and implications for lithospheric thinning of the North China Craton

    No full text
    Mesozoic magmatic rocks are widely distributed in the North China Craton (NCC) and are crucial to understanding the timing, location, and geodynamic mechanisms of lithospheric thinning of the NCC. In this study, we report geochronological, petrogeochemical, and Lu–Hf isotopic data for adakitic granitoids from different parts of Xiuyan pluton in the Liaodong Peninsula, aiming to constrain their magma sources, petrogenesis, and tectonic implications. The adakites are metaluminous to weakly peraluminous and are classified as high-K calc-alkaline I-type granite with Early Cretaceous zircon U–Pb ages of 129–126 Ma. They exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y and no pronounced Eu anomalies. They are enriched in Rb, U, and light rare-earth elements and are depleted in Ta, Nb, P, and Ti. The adakites from the eastern part of the pluton have low εHf(t) values (–8.5 to –4.0) with old TDM2 ages (1.57–1.31 Ga), indicating they were derived from the lower crust containing juvenile mantle-derived materials. In contrast, adakites from the northern part of the pluton have lower εHf(t) values (–19.7 to –16.6) with older TDM2 ages (2.21–2.03 Ga), indicating that they were derived mainly from an ancient crust. Our results show that both adakitic magmas were derived from partial melting of delaminated lower crust. Their relatively high MgO and Ni contents and Mg# values indicate that the melts interacted with mantle peridotites. The lower crust delamination beneath the Liaodong Peninsula resulted from paleo-Pacific plate subduction during the Early Cretaceous, which resulted in thinning of Mesozoic crust in the Xiuyan area.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Designing Pt-skin of Pt-based Bimetallic electrocatalysts for Oxygen Reduction Reaction

    No full text
    过去几十年,能源储存转化领域取得重大的进展. 而Pt-skin的Pt基双金属电催化剂在调控电催化剂的电子结构具有巨大的前景,特别是对于氧还原反应而言. 本工作主要综述了最近几年关于Pt-skin的Pt 基双金属电催化剂的设计制备,以及其性能. 本文的主要重点在于系统的综述了Pt-skin的Pt 基双金属电催化剂的合成方法,以及其对于氧还原反应的机理研究.In the past decade, great advancement has been made in the development of nanocatalysts for energy conversion and storage. Pt-skin of Pt-based bimetallic has shown a great potential in the tuning the electronic structures of electrocatalytically active materials toward oxygen reduction reaction. Here, we offer a brief overview of the recent research on the design and preparation of catalysts. Our focus is paid on the systematic studies of preparation and performance of Pt-skin catalysts towards oxygen reduction reaction.This work is supported by Australian Research Council (ARC) (LP120200432 and DP140104062), Baosteel-Australia joint research and development center (Baosteel Grant no. BA14006), and the Commonwealth of Australia through the Automotive Australia 2020 Cooperative Research Centre (Auto CRC)This work is supported by Australian Research Council (ARC) (LP120200432 and DP140104062), Baosteel-Australia joint research and development center (Baosteel Grant no. BA14006), and the Commonwealth of Australia through the Automotive Australia 2020 Cooperative Research Centre (Auto CRC)作者联系地址:超导电子材料研究所,澳大利亚创新材料研究所,伍伦贡大学,创新校区,澳大利亚新南威尔士州,北卧龙岗,2500Author's Address: Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, New South Wales 2500, Australia.通讯作者E-mail:[email protected]
    corecore