123 research outputs found

    Cooperative-Competitive Healthcare Service Negotiation

    Get PDF
    Service negotiation is a complex activity, especially in complex domains such as healthcare. The provision of healthcare services typically involves the coordination of several professionals with different skills and locations. There is usually negotiation between health- care service providers as different services have specific constraints, variables, and features (scheduling, waiting lists, availability of resources, etc.), which may conflict with each other. While automating the negotiation processes by using software can improve the e±ciency and quality of healthcare services, most of the existing negotiation automations are positional bargaining in nature, and are not suitable for complex scenarios in healthcare services. This paper proposes a cooperative-competitive negotiation model that enables negotiating parties to share their knowledge and work toward optimal solutions. In this model, patients and healthcare providers work together to develop a patient-centered treatment plan. We further automate the new negotiation model with software agents

    OR-021 GLUT4 rs5418 genotype and performance of Cross-country skiers in China

    Get PDF
    Objective  The GLUT4 gene is one of the genes that have a potential influence on physical performance. Studies have shown that the rs5418 genotype of GLUT4 is more prevalent in endurance athletes. Therefore, the GLUT4 rs5418 polymorphism may become a genetic marker for Cross-country skiers. The study aimed to examine the association of the GLUT4 rs5418 genotype with the performance of Cross-country skiers. Methods The distributions of the GLUT4 rs5418 genotype and allele were examined in a general population (206) and a group of elite Cross-country skiers (163) in China by using PCR-RFLP and TOF. Results Compared with the general population, the elite Cross-country skiers (χ2=9.267ï¼›df=2ï¼›P=0.01ï¼›P<0.05), especially the females, had a higher frequency of the AA genotype(Total: 22.09% VS 13.59%, Female:24.19% VS 13.59% ). The Cross-country skiers had a higher frequency of the A allele than the general population(45.40% VS 33.98%), and the difference was statistically significant (χ2=9.972ï¼›df=1ï¼›P=0.02ï¼›P<0.05). Conclusions The GLUT4 rs5418 polymorphism was associated with the performance of elite Cross-country skiers in China. The SNP rs5418 could be used as a biomarker for selecting elite Cross-country skiers in China

    Pressure-induced coevolution of transport properties and lattice stability in CaK(Fe1-xNix)4As4 (x= 0.04 and 0) superconductors with and without spin-vortex crystal state

    Full text link
    Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.04 and 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse of tetragonal (h-cT and f-cT) phases, by the complementary measurements of high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction. We identify the three critical pressures, P1 that is the turn-on critical pressure of the h-cT phase transition and it coincides with the critical pressure for the sign change of Hall coefficient from positive to negative, a manifestation of the Fermi surface reconstruction, P2 that is the turn-off pressures of the h-cT phase transition, and P3 that is the critical pressure of the f-cT phase transition. By comparing the high-pressure results measured from the two kinds of samples, we find a distinct left-shift of the P1 for the doped sample, at the pressure of which its SVC state is fully suppressed, however the P2 and the P3 remain the same as that of the undoped one. Our results not only provide a consistent understanding on the results reported before, but also demonstrate the importance of the Fe-As bonding in stabilizing the superconductivity of the iron pnictide superconductors through the pressure window

    Phenothiazinen-Dimesitylarylborane-Based Thermally Activated Delayed Fluorescence: High-Performance Non-doped OLEDs With Reduced Efficiency Roll-Off at High Luminescence

    Get PDF
    We report a phenothiazinen-dimesitylarylborane thermally activated delayed fluorescence (TADF) molecule that exhibits high external quantum efficiency (EQE) in non-doped organic light-emitting diodes (OLEDs) at high luminescence. The non-doped device shows green electroluminescence with an emission peak of 540 nm and a maximum EQE of 19.66% obtained at a luminescence of ~170 cd m−2. The EQE is still as high as 17.31% at a high luminescence of 1,500 cd m−2 with small efficiency roll-off

    SARS-CoV-2 mutations affect antigen processing by the proteasome to alter CD8+ T cell responses

    Get PDF
    Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design

    Coexistence of superconductivity with exotic ferromagnetic state in pressurized non-superconducting UTe2_2

    Full text link
    The discovery of superconductivity in heavy Fermion UTe2_2, a candidate topological and triplet-paired superconductor, has aroused widespread interest. However, to date, superconductivity has only been reported in nonstoichiometric crystals of UTe2_2 with a Te deficit. Here, we demonstrate that the application of uniaxial pressure induces superconductivity in stoichiometric UTe2_2 crystals. Measurements of resistivity, magnetoresistance and susceptibility reveal that uniaxial pressure results in a suppression of the Kondo coherent state seen at ambient pressure, leading to the emergence of superconductivity initially at 1.5 GP, followed by the development of bulk superconductivity at 4.8 GPa. The superconducting state coexists with an exotic ferromagnetically ordered (FM) state that develops just below the onset temperature of the superconducting transition. High-pressure synchrotron x-ray diffraction measurements performed at 20 K indicate that no structural phase transition occurs over the measured pressure range. Our results not only demonstrate the coexistence of superconductivity with an exotic ferromagnetic state in pressurized stoichiometric UTe2_2, but also highlight a vital role of Te deficiency in developing superconductivity at ambient pressures.Comment: 17 pages, 4 figure

    Early Virological and Immunological Events in Asymptomatic Epstein-Barr Virus Infection in African Children

    Get PDF
    Epstein-Barr virus (EBV) infection often occurs in early childhood and is asymptomatic. However, if delayed until adolescence, primary infection may manifest as acute infectious mononucleosis (AIM), a febrile illness characterised by global CD8+ T-cell lymphocytosis, much of it reflecting a huge expansion of activated EBV-specific CD8+ T-cells. While the events of AIM have been intensely studied, little is known about how these relate to asymptomatic primary infection. Here Gambian children (14–18 months old, an age at which many acquire the virus) were followed for the ensuing six months, monitoring circulating EBV loads, antibody status against virus capsid antigen (VCA) and both total and virus-specific CD8+ T-cell numbers. Many children were IgG anti-VCA-positive and, though no longer IgM-positive, still retained high virus loads comparable to AIM patients and had detectable EBV-specific T-cells, some still expressing activation markers. Virus loads and the frequency/activation status of specific T-cells decreased over time, consistent with resolution of a relatively recent primary infection. Six children with similarly high EBV loads were IgM anti-VCA-positive, indicating very recent infection. In three of these donors with HLA types allowing MHC-tetramer analysis, highly activated EBV-specific T-cells were detectable in the blood with one individual epitope response reaching 15% of all CD8+ T-cells. That response was culled and the cells lost activation markers over time, just as seen in AIM. However, unlike AIM, these events occurred without marked expansion of total CD8+ numbers. Thus asymptomatic EBV infection in children elicits a virus-specific CD8+ T-cell response that can control the infection without over-expansion; conversely, in AIM it appears the CD8 over-expansion, rather than virus load per se, is the cause of disease symptoms

    Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits

    Get PDF
    The effect of oat β-glucan on intestinal function and growth performance of weaned rabbits were explored by multi-omics integrative analyses in the present study. New Zealand White rabbits fed oat β-glucan [200 mg/kg body weight (BW)] for 4 weeks, and serum markers, colon histological alterations, colonic microbiome, colonic metabolome, and serum metabolome were measured. The results revealed that oat β-glucan increased BW, average daily gain (ADG), average daily food intake (ADFI), and decreased serum tumor necrosis factor-α (TNF-α) interleukin-1β (IL-1β), and lipopolysaccharide (LPS) contents, but did not affect colonic microstructure. Microbiota community analysis showed oat β-glucan modulated gut microbial composition and structure, increased the abundances of beneficial bacteria Lactobacillus, Prevotellaceae_UCG-001, Pediococcus, Bacillus, etc. Oat β-glucan also increased intestinal propionic acid, valeric acid, and butyric acid concentrations, decreased lysine and aromatic amino acid (AAA) derivative contents. Serum metabolite analysis revealed that oat β-glucan altered host carbohydrate, lipid, and amino acid metabolism. These results suggested that oat β-glucan could inhibit systemic inflammation and protect intestinal function by regulating gut microbiota and related metabolites, which further helps to improve growth performance in weaned rabbits
    • …
    corecore