2,652 research outputs found

    Accurate determination of elastic parameters for multi-component membranes

    Get PDF
    Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The combined approach allows for a reproducible and reliable determination of the physical parameters of complex vesicle systems. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.Comment: (*) authors contributed equally, 6 pages, 3 figures, 1 table; added insets to figure

    Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I

    Full text link
    We propose a Monte Carlo method, which is a hybrid method of the quantum Monte Carlo method and variational Monte Carlo theory, to study the Hubbard model. The theory is based on the off-diagonal and the Gutzwiller type correlation factors which are taken into account by a Monte Carlo algorithm. In the 4x4 system our method is able to reproduce the exact results obtained by the diagonalization. An application is given to investigate the half-filled band case of two-dimensional square lattice. The energy is favorably compared with quantum Monte Carlo data.Comment: 9 pages, 11 figure

    Quantum Monte Carlo diagonalization for many-fermion systems

    Full text link
    In this study we present an optimization method based on the quantum Monte Carlo diagonalization for many-fermion systems. Using the Hubbard-Stratonovich transformation, employed to decompose the interactions in terms of auxiliary fields, we expand the true ground-state wave function. The ground-state wave function is written as a linear combination of the basis wave functions. The Hamiltonian is diagonalized to obtain the lowest energy state, using the variational principle within the selected subspace of the basis functions. This method is free from the difficulty known as the negative sign problem. We can optimize a wave function using two procedures. The first procedure is to increase the number of basis functions. The second improves each basis function through the operators, e−ΔτHe^{-\Delta\tau H}, using the Hubbard-Stratonovich decomposition. We present an algorithm for the Quantum Monte Carlo diagonalization method using a genetic algorithm and the renormalization method. We compute the ground-state energy and correlation functions of small clusters to compare with available data

    Superconductivity, magnetic order, and quadrupolar order in the filled skutterudite system Pr1−x_{1-x}Ndx_{x}Os4_4Sb12_{12}

    Full text link
    Superconductivity, magnetic order, and quadrupolar order have been investigated in the filled skutterudite system Pr1−x_{1-x}Ndx_{x}Os4_4Sb12_{12} as a function of composition xx in magnetic fields up to 9 tesla and at temperatures between 50 mK and 10 K. Electrical resistivity measurements indicate that the high field ordered phase (HFOP), which has been identified with antiferroquadruoplar order, persists to xx ∼\sim 0.5. The superconducting critical temperature TcT_c of PrOs4_4Sb12_{12} is depressed linearly with Nd concentration to xx ∼\sim 0.55, whereas the Curie temperature TFMT_{FM} of NdOs4_4Sb12_{12} is depressed linearly with Pr composition to (1−x1-x) ∼\sim 0.45. In the superconducting region, the upper critical field Hc2(x,0)H_{c2}(x,0) is depressed quadratically with xx in the range 0 << xx ≲\lesssim 0.3, exhibits a kink at xx ≈\approx 0.3, and then decreases linearly with xx in the range 0.3 ≲\lesssim xx ≲\lesssim 0.6. The behavior of Hc2(x,0)H_{c2}(x,0) appears to be due to pair breaking caused by the applied magnetic field and the exhange field associated with the polarization of the Nd magnetic moments, in the superconducting state. From magnetic susceptibility measurements, the correlations between the Nd moments in the superconducting state appear to change from ferromagnetic in the range 0.3 ≲\lesssim xx ≲\lesssim 0.6 to antiferromagnetic in the range 0 << xx ≲\lesssim 0.3. Specific heat measurements on a sample with xx == 0.45 indicate that magnetic order occurs in the superconducting state, as is also inferred from the depression of Hc2(x,0)H_{c2}(x,0) with xx.Comment: 7 pages, 7 figures, currently submitted to Phys. Rev.

    Minimal Trinification

    Full text link
    We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> \bar\nu K^+ and p -> \mu^+ K^0 potentially observable. We also consider supersymmetric versions of the model, with one or two Higgs doublets at the weak scale. The radiative see-saw mechanism fails with weak-scale supersymmetry due to the nonrenormalization of the superpotential, but operates in the split-SUSY scenario.Comment: 23 pages, uses axodra

    Optical Control of Field-Emission Sites by Femtosecond Laser Pulses

    Full text link
    We have investigated field emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses. Strongly asymmetric modulations of the field emission intensity distributions are observed depending on the polarization of the light and the laser incidence direction relative to the azimuthal orientation of tip apex. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity on the 10 nm scale. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively.Comment: 4 pages, submitted to Physical Review Letter

    Madelung Energy of the Valence Skipping Compound BaBiO3_3

    Full text link
    Several elements show valence skip fluctuation, for instance, Tl forms the compounds in valence states +1 and +3, and Bi forms in +3 and +5 states. This kind of fluctuation gives rise to a negative effective attractive interaction and the Kondo effect. In the compounds of valence skipping elements, the carrier doping will induce superconductivity with high critical temperature. For example, Ba1−x_{1-x}Kx_xBiO3_3 shows high TcT_c which is unlikely from the conventional electron-phonon mechanism. The reason for the missing of some valence states in such valence skip compounds remains a mystery. We have performed the evaluation of the Madelung potential for BaBiO3_3, and have shown for the first time that charge-ordered state is stabilized if we take into account the polarization of the oxygen charge. We argue that the effective Coulomb interaction energy UU may be negative evaluating the local excitation energy

    Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae

    Get PDF
    Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced

    Stability, Gain, and Robustness in Quantum Feedback Networks

    Full text link
    This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.Comment: 16 page
    • …
    corecore