1,457 research outputs found
Orbital Order, Structural Transition and Superconductivity in Iron Pnictides
We investigate the 16-band d-p model for iron pnictide superconductors in the
presence of the electron-phonon coupling g with the orthorhombic mode which is
crucial for reproducing the recently observed ultrasonic softening. Within the
RPA, we obtain the ferro-orbital order below TQ which induces the
tetragonal-orthorhombic structural transition at Ts = TQ, together with the
stripe-type antiferromagnetic order below TN. Near the phase transitions, the
system shows the s++ wave superconductivity due to the orbital fluctuation for
a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation
for a small g case with TQ < TN. The former case is consistent with the phase
diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp
Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group
We propose a systematic method to generate a complete orthonormal basis set
of multipole expansion for magnetic structures in arbitrary crystal structure.
The key idea is the introduction of a virtual atomic cluster of a target
crystal, on which we can clearly define the magnetic configurations
corresponding to symmetry-adapted multipole moments. The magnetic
configurations are then mapped onto the crystal so as to preserve the magnetic
point group of the multipole moments, leading to the magnetic structures
classified according to the irreducible representations of crystallographic
point group. We apply the present scheme to pyrhochlore and hexagonal ABO3
crystal structures, and demonstrate that the multipole expansion is useful to
investigate the macroscopic responses of antiferromagnets
Study of Ni-doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11
Specific heats and transport quantities of the LaFe1-yNiyAsO0.89F0.11 system
have been measured, and the results are discussed together with those reported
previously by our group mainly for LaFe1-yCoyAsO0.89F0.11 and
LaFeAsO0.89-xF0.11+x systems. The y dependence of the electronic specific heat
coefficient gamma can basically be understood by using the rigid-band picture,
where Ni ions provide 2 electrons to the host conduction bands and behave as
nonmagnetic impurities. The superconducting transition temperature Tc of
LaFe1-yNiyAsO0.89F0.11 becomes zero, as the carrier density p (=2y+0.11) doped
to LaFeAsO reaches its critical value p_c_ ~0.2. This p_c_ value of ~0.2 is
commonly observed for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems,
in which the relations p = x+0.11 and p = y+0.11 hold, respectively. As we
pointed out previously, the critical value corresponds to the disappearance of
the hole-Fermi surface. These results indicate that the carrier number solely
determines the Tc value. We have not observed appreciable effects of pair
breaking, which originates from the nonmagnetic impurity scattering of
conduction electrons and strongly suppresses T_c_ values of systems with
sign-reversing of the order parameter over the Fermi surface(s). On the basis
of the results, the so-called s_+-_ symmetry of the order parameter with the
sign-reversing is excluded.Comment: 4 pages, 7 figures, submitted to J. Phys. Soc. Jpn, (modified
version
Recommended from our members
Influence of inner diameter and height of ring-shaped REBaCuO bulks on trapped field and mechanical stress during field-cooled magnetization
In this paper, the trapped field, Bz, thermal hoop stress, σθcool, by cooling from 300 to 50 K and electromagnetic hoop stress, σθFCM, during field cooled magnetization (FCM) from Bapp = 6.3 and 9.4 T are investigated numerically for ring-shaped REBaCuO bulks with various inner diameters (I.D.) and heights (H) and reinforced by an Al alloy ring. For simplicity, an identical critical current density, Jc(B), which is a typical value at 50 K, is assumed in the simulation. The Bz value at the center of the ring bulk changes depending on the I.D. and H values of the ring bulk, which results from the different distribution of the superconducting current. As a result, the total hoop stress, σθtotal, (= σθcool + σθFCM) also changes for each ring bulk and for each Bapp due to the variation of the σθcool and σθFCM values. The maximum σθ total value, which affects the bulk fracture at Bapp = 9.4 T, increases with decreasing the height of ring bulk. These results can present guidelines for designing a trapped-field magnet using ring bulks
- …