44,846 research outputs found

    Changes in the US burden of chronic kidney disease from 2002 to 2016: An analysis of the Global Burden of Disease study

    Get PDF
    Introduction: Over the past 15 years, changes in demographic, social, and epidemiologic trends occurred in the United States. These changes likely contributed to changes in chronic kidney disease (CKD) epidemiology. Objective: To describe the change in burden of CKD at the US state level from 2002 to 2016. Design, Setting, and Participants: This systematic analysis used data and methodologies from the 2016 Global Burden of Disease study in the United States. Data on CKD from 2002 to 2016 were examined at the state level. Main Outcomes and Measures: Disability-adjusted life years (DALYs) and death due to CKD. Results: In this analysis of data from individuals in the United States, from 2002 to 2016, CKD DALYs increased by 52.6%, from 1 269 049 DALYs (95% uncertainty interval [UI], 1 154 521-1 387 008) to 1 935 954 DALYs (95% UI, 1 747 356-2 124 795). Death due to CKD increased by 58.3%, from 52 127 deaths (95% UI, 51 082-53 076) to 82 539 deaths (95% UI, 80 298-84 652). All states exhibited increases in CKD burden, but the rate of change (2002-2016) and the burden in 2016 varied by state. States in the southern United States (including Mississippi and Louisiana) exhibited more than twice the burden seen in other states (eg, the age-standardized CKD DALY rate in Vermont was 321 [95% UI, 281-363] per 100 000 population, whereas the rate in Mississippi was 697 [95% UI, 620-779] per 100 000 population). In the United States, the increase in CKD DALYs was attributable to increased risk exposure (40.3%), aging (32.3%), and population growth (27.4%). Age-standardized CKD DALY rates increased by 18.6% where increases in metabolic, and to a lesser extent dietary, risk factors contributed 93.8% and 5.3% of this change, respectively. Chronic kidney disease due to diabetes was the primary contributor for the 26.8% increased probability of death due to CKD among the population aged 20 to 54 years; among the population aged 55 to 89 years, the probability of death due to CKD increased by 25.6% and was driven by CKD due to diabetes and decreased probability of death from causes other than CKD. Improvement in sociodemographic development was coupled with an increase in age-standardized CKD DALY rates that occurred at a faster pace than that of other noncommunicable diseases in the United States. Conclusions and Relevance: Our findings revealed that between 2002 and 2016, the burden of CKD in the United States appeared to be increasing and variable among states. These changes may be associated with increased risk exposure and demographic expansion leading to increased probability of death due to CKD, especially among young adults. The findings suggest that an effort to target the reduction of CKD through greater attention to metabolic and dietary risks, especially among younger adults, is necessary

    Simple ultraviolet-based soft-lithography process for fabrication of low-loss polymer polysiloxanes-based waveguides

    Get PDF
    A simple ultraviolet (UV)-based soft-lithography process is used for fabrication of polymer polysiloxanes (PSQ-L) waveguides. The imprint process is first done on the cladding PSQ-LL layer and is followed by a spin-coating step to fill the imprinted features with core PSQ-LH layer material. The optical loss of the straight PSQ-L waveguides is characterised by the Fabry-Perot method for the first time. Even with non-polished facet of the waveguide, the Fabry-Perot resonance spectrum is obtained. An upper limit scattering loss of the waveguide is extracted to be less than 0.8 +/- 0.2 dB/cm for TE mode and 1.3 +/- 0.2 dB/cm for TM mode at 1550 nm. The fully transferred pattern and low scattering loss proves it to be an effective way to replicate low-loss polymer PSQ-L-based waveguides

    Reduced dynamics with renormalization in solid-state charge qubit measurement

    Full text link
    Quantum measurement will inevitably cause backaction on the measured system, resulting in the well known dephasing and relaxation. In this report, in the context of solid--state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.Comment: 12 pages, 4 figure

    Electron-Angular-Distribution Reshaping in Quantum Radiation-Dominated Regime

    Full text link
    Dynamics of an electron beam head-on colliding with an ultraintense focused ultrashort circularly-polarized laser pulse are investigated in the quantum radiation-dominated regime. Generally, the ponderomotive force of the laser fields may deflect the electrons transversely, to form a ring structure on the cross-section of the electron beam. However, we find that when the Lorentz factor of the electron γ\gamma is approximately one order of magnitude larger than the invariant laser field parameter ξ\xi, the stochastic nature of the photon emission leads to electron aggregation abnormally inwards to the propagation axis of the laser pulse. Consequently, the electron angular distribution after the interaction exhibits a peak structure in the beam propagation direction, which is apparently distinguished from the "ring"-structure of the distribution in the classical regime, and therefore, can be recognized as a proof of the fundamental quantum stochastic nature of radiation. The stochasticity signature is robust with respect to the laser and electron parameters and observable with current experimental techniques

    Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams

    Full text link
    Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments. We put forward a novel efficient way for generating ultrarelativistic polarized positron beams employing currently available laser fields. For this purpose the generation of polarized positrons via multiphoton Breit-Wheeler pair production and the associated spin dynamics in single-shot interaction of an ultraintense laser pulse with an ultrarelativistic electron beam is investigated in the quantum radiation-dominated regime. A specifically tailored small ellipticity of the laser field is shown to promote splitting of the polarized particles along the minor axis of laser polarization into two oppositely polarized beams. In spite of radiative de-polarization, a dense positron beam with up to about 90\% polarization can be generated in tens of femtoseconds. The method may eventually usher high-energy physics studies into smaller-scale laser laboratories

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde
    • …
    corecore