153 research outputs found

    Exotic single-photon and enhanced deep-level emissions in hBN strain superlattice

    Full text link
    The peculiar defect-related photon emission processes in 2D hexagonal boron nitride (hBN) have become a topic of intense research due to their potential applications in quantum information and sensing technologies. Recent efforts have focused on activating and modulating the defect energy levels in hBN by methods that can be integrated on a chip, and understanding the underlying physical mechanism. Here, we report on exotic single photon and enhanced deep-level emissions in 2D hBN strain superlattice, which is fabricated by transferring multilayer hBN onto hexagonal close-packed silica spheres on silica substrate. We realize effective activation of the single photon emissions (SPEs) in the multilayer hBN at the positions that are in contact with the apex of the SiO2 spheres. At these points, the local tensile strain induced blue-shift of the SPE is found to be up to 12 nm. Furthermore, high spatial resolution cathodoluminescence measurments show remarkable strain-enhanced deep-level (DL) emissions in the multilayer hBN with the emission intensity distribution following the periodic hexagonal pattern of the strain superlattice. The maximum DL emission enhancement is up to 350% with a energy redshift of 6 nm. Our results provide a simple on-chip compatible method for activating and tuning the defect-related photon emissions in multilayer hBN, demonstrating the potential of hBN strain superlattice as a building block for future on-chip quantum nanophotonic devices

    High-Performance Non-enzymatic Glucose Sensors Based on CoNiCu Alloy Nanotubes Arrays Prepared by Electrodeposition

    Get PDF
    Transition metal alloys are good candidate electrodes for non-enzymatic glucose sensors due to their low cost and high performance. In this work, we reported the controllable electrodeposition of CoNiCu alloy nanotubes electrodes using anodic aluminum oxide (AAO) as template. Uniform CoNiCu alloy arrays of nanotubes about 2 μm in length and 280 nm in diameter were obtained by optimizing the electrodeposition parameters. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) measurements indicated that the as-prepared alloy nanotubes arrays are composed of 64.7 wt% Co-19.4 wt% Ni-15.9 wt% Cu. Non-enzymatic glucose sensing measurements indicated that the CoNiCu nanotubes arrays possessed a low detection limit of 0.5 μM, a high sensitivity of 791 μA mM−1 cm−2 from 50 to 1,551 μM and 322 μA mM−1 cm−2 from 1,551 to 4,050 μM. Besides, they showed high reliability with the capacity of anti-jamming. Tafel plots showed that alloying brought higher exchange current density and faster reaction speed. The high performance should be due to the synergistic effect of Co, Ni, and Cu metal elements and high surface area of nanotubes arrays

    A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    Get PDF
    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health
    • …
    corecore