49,860 research outputs found
Electron-Phonon Interactions for Optical Phonon Modes in Few-Layer Graphene
We present a first-principles study of the electron-phonon (e-ph)
interactions and their contributions to the linewidths for the optical phonon
modes at and K in one to three-layer graphene. It is found that due to
the interlayer coupling and the stacking geometry, the high-frequency optical
phonon modes in few-layer graphene couple with different valence and conduction
bands, giving rise to different e-ph interaction strengths for these modes.
Some of the multilayer optical modes derived from the - mode of
monolayer graphene exhibit slightly higher frequencies and much reduced
linewidths. In addition, the linewidths of K- related modes in
multilayers depend on the stacking pattern and decrease with increasing layer
numbers.Comment: 6 pages,5 figures, submitted to PR
Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland
Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal CdReO
Strong electron interactions can drive metallic systems toward a variety of
well-known symmetry-broken phases, but the instabilities of correlated metals
with strong spin-orbit coupling have only recently begun to be explored. We
uncovered a multipolar nematic phase of matter in the metallic pyrochlore
CdReO using spatially resolved second-harmonic optical anisotropy
measurements. Like previously discovered electronic nematic phases, this
multipolar phase spontaneously breaks rotational symmetry while preserving
translational invariance. However, it has the distinguishing property of being
odd under spatial inversion, which is allowed only in the presence of
spin-orbit coupling. By examining the critical behavior of the multipolar
nematic order parameter, we show that it drives the thermal phase transition
near 200 kelvin in CdReO and induces a parity-breaking lattice
distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio
Field-Trial of Machine Learning-Assisted Quantum Key Distribution (QKD) Networking with SDN
We demonstrated, for the first time, a machine-learning method to assist the
coexistence between quantum and classical communication channels.
Software-defined networking was used to successfully enable the key generation
and transmission over a city and campus network
Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory
Based on a large component QCD derived directly from full QCD by integrating
over the small components of quark fields with , an
alternative quantization procedure is adopted to establish a basic theoretical
framework of heavy quark effective field theory (HQEFT) in the sense of
effective quantum field theory. The procedure concerns quantum generators of
Poincare group, Hilbert and Fock space, anticommutations and velocity
super-selection rule, propagator and Feynman rules, finite mass corrections,
trivialization of gluon couplings and renormalization of Wilson loop. The
Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated.
Some new symmetries in the infinite mass limit are discussed. Weak transition
matrix elements and masses of hadrons in HQEFT are well defined to display a
manifest spin-flavor symmetry and corrections. A simple trace
formulation approach is explicitly demonstrated by using LSZ reduction formula
in HQEFT, and shown to be very useful for parameterizing the transition form
factors via expansion. As the heavy quark and antiquark fields in HQEFT
are treated on the same footing in a fully symmetric way, the quark-antiquark
coupling terms naturally appear and play important roles for simplifying the
structure of transition matrix elements, and for understanding the concept of
`dressed heavy quark' - hadron duality. In the case that the `longitudinal' and
`transverse' residual momenta of heavy quark are at the same order of power
counting, HQEFT provides a consistent approach for systematically analyzing
heavy quark expansion in terms of . Some interesting features in
applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio
- β¦