107 research outputs found

    Surface Josephson plasma waves in layered superconductors

    Full text link
    We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency ωJ\omega_J. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood's anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).Comment: 4 pages, 2 figure

    Layered superconductors as negative-refractive-index metamaterials

    Full text link
    We analyze the use of layered superconductors as anisotropic metamaterials. Layered superconductors can have a negative refraction index in a wide frequency range for arbitrary incident angles. Indeed, low-Tc (s-wave) superconductors allow to produce artificial heterostructures with low losses for T<<Tc. However, the real part of their in-plane effective permittivity is very large. Moreover, even at low temperatures, layered high-Tc superconductors have a large in-plane normal conductivity, producing large losses (due to d-wave symmetry). Therefore, it is difficult to enhance the evanescent modes in either low-Tc or high-Tc superconductors.Comment: 4 pages, 2 figure

    Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves

    Full text link
    We predict a complete TM-TE transformation of the polarization of terahertz electromagnetic waves reflected from a strongly anisotropic boundary of a layered superconductor. We consider the case when the wave is incident on the superconductor from a dielectric prism separated from the sample by a thin vacuum gap. The physical origin of the predicted phenomenon is similar to the Wood anomalies known in optics, and is related to the resonance excitation of the oblique surface waves. We also discuss the dispersion relation for these waves, propagating along the boundary of the superconductor at some angle with respect to the anisotropy axis, as well as their excitation by the attenuated-total-reflection method.Comment: 4 pages, 5 figure

    Competition between Two Kinds of Correlations in Literary Texts

    Full text link
    A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distances, L 300 define this nontrivial structure. For some concrete examples of literary texts, the memory functions are obtained and their power-law behavior at long distances is disclosed. This property is shown to be a cause of self-similarity of texts with respect to the decimation procedure.Comment: 7 pages, 7 figures, Submitted to Physica

    Inhomogeneous DNA: conducting exons and insulating introns

    Full text link
    Parts of DNA sequences known as exons and introns play very different role in coding and storage of genetic information. Here we show that their conducting properties are also very different. Taking into account long-range correlations among four basic nucleotides that form double-stranded DNA sequence, we calculate electron localization length for exon and intron regions. Analyzing different DNA molecules, we obtain that the exons have narrow bands of extended states, unlike the introns where all the states are well localized. The band of extended states is due to a specific form of the binary correlation function of the sequence of basic DNA nucleotides.Comment: 14 pages, 6 figure

    Response of HTS tapes to a parallel ac magnetic field in the vicinity of the superconducting transition

    No full text
    We have studied the temperature dependence of the ac magnetic susceptibility χ(T) = χ′(T) + iχ″(T) of YBCO tapes in a parallel magnetic field in both the Meissner and vortex states. For the vortex state, we have observed two maximums in the χ″(T) dependence. The position and the magnitude of one of these maxima are described well by the nonlocal critical state model. The second maximum and corresponding kink in the function χ′(T) observed close to the temperature Tc of the superconducting transition are unexpected. The origin of this maximum cannot be explained within the usual notions of the high-temperature superconductivity. We suppose that it is related to some magnetic restructuring in the superconducting layer just above Tc. Our results put a question on the correctness of the interpretation of some previous microwave experiments

    Additive N-Step Markov Chains as Prototype Model of Symbolic Stochastic Dynamical Systems with Long-Range Correlations

    Full text link
    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys. Rev. Lett. 90, 110601 (2003) is generalized to the biased case (non equal numbers of zeros and unities in the chain). In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.Comment: 19 pages, 8 figure

    Surface Plasma Waves Across the Layers of Intrinsic Josephson Junctions

    Full text link
    We predict surface electromagnetic waves propagating across the layers of intrinsic Josephson junctions. We find the spectrum of the surface waves and study the distribution of the electromagnetic field inside and outside the superconductor. The profile of the amplitude oscillations of the electric field component of such waves is peculiar: initially, it increases toward the center of the superconductor and, after reaching a crossover point, decreases exponentially.Comment: 11 pages, 5 figure

    Resonance effects due to the excitation of surface Josephson plasma waves in layered superconductors

    Full text link
    We analytically examine the excitation of surface Josephson plasma waves (SJPWs) in periodically-modulated layered superconductors. We show that the absorption of the incident electromagnetic wave can be substantially increased, for certain incident angles, due to the resonance excitation of SJPWs. The absorption increase is accompanied by the decrease of the specular reflection. Moreover, we find the physical conditions guaranteeing the total absorption (and total suppression of the specular reflection). These conditions can be realized for Bi2212 superconductor films.Comment: 17 pages, 3 figure
    corecore