37 research outputs found

    Borosulfates-Synthesis and Structural Chemistry of Silicate Analogue Compounds

    Get PDF
    Borosulfates are oxoanionic compounds consisting of condensed sulfur- and boron-centered tetrahedra. Hitherto, they were mostly achieved from solvothermal syntheses in SO3-enriched sulfuric acid, or from reactions with the superacid H[B(HSO4)(4)]. The crystal structures are very similar to those of the corresponding class of silicates and their substitution variants, especially regarding the typical structural motif of corner-sharing tetrahedra. However, the borosulfates are supposed to be even more versatile, because (BO3) units might also be part of the anionic network. The following article deals with detailed reports on the different synthesis strategies, the crystal chemistry of borosulfates in comparison to silicates, and their hitherto identified properties

    Polytypism of Compounds with the General Formula Cs{Al2[TP6O20]} (T = B, Al): OD (Order-Disorder) Description, Topological Features, and DFT-Calculations

    No full text
    The crystal structures of compounds with the general formula Cs{[6]Al2[[4]TP6O20]} (where T = Al, B) display order-disorder (OD) character and can be described using the same OD groupoid family. Their structures are built up by two kinds of nonpolar layers, with the layer symmetries Pc(n)2 (L2n+1-type) and Pc(a)m (L2n-type) (category IV). Layers of both types (L2n and L2n+1) alternate along the b direction and have common translation vectors a and c (a ~ 10.0 Å, c ~ 12.0 Å). All ordered polytypes as well as disordered structures can be obtained using the following partial symmetry operators that may be active in the L2n type layer: the 21 screw axis parallel to c [– – 21] or inversion centers and the 21 screw axis parallel to a [21 – –]. Different sequences of operators active in the L2n type layer ([– – 21] screw axes or inversion centers and [21 – –] screw axes) define the formation of multilayered structures with the increased b parameter, which are considered as non-MDO polytypes. The microporous heteropolyhedral MT-frameworks are suitable for the migration of small cations such as Li+, Na+ Ag+. Compounds with the general formula Rb{[6]M3+[[4]T3+P6O20]} (M = Al, Ga; T = Al, Ga) are based on heteropolyhedral MT-frameworks with the same stoichiometry as in Cs{[6]Al2[[4]TP6O20]} (where T = Al, B). It was found that all the frameworks have common natural tilings, which indicate the close relationships of the two families of compounds. The conclusions are supported by the DFT calculation data
    corecore