55 research outputs found

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    Intracellular Amyloid β Oligomers Impair Organelle Transport and Induce Dendritic Spine Loss in Primary Neurons

    Get PDF
    Introduction Synaptic dysfunction and intracellular transport defects are early events in Alzheimer’s disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its extracellular deposition and is also associated with synaptic dysfunction in AD. However, the links between intracellular Aβ, spine alteration, and mechanisms that support synaptic maintenance such as organelle trafficking are poorly understood. Results We compared the effects of wild-type and Osaka (E693Δ)-mutant amyloid precursor proteins: the former secretes Aβ into extracellular space and the latter accumulates Aβ oligomers within cells. First we investigated the effects of intracellular Aβ oligomers on dendritic spines in primary neurons and their tau-dependency using tau knockout neurons. We found that intracellular Aβ oligomers caused a reduction in mushroom, or mature spines, independently of tau. We also found that intracellular Aβ oligomers significantly impaired the intracellular transport of BDNF, mitochondria, and recycling endosomes: cargoes essential for synaptic maintenance. A reduction in BDNF transport by intracellular Aβ oligomers was also observed in tau knockout neurons. Conclusions Our findings indicate that intracellular Aβ oligomers likely contribute to early synaptic pathology in AD and argue against the consensus that Aβ-induced spine loss and transport defects require tau

    EpCAM-Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With Stem/Progenitor Cell Features

    Get PDF
    Cancer progression/metastases and embryonic development share many properties including cellular plasticity, dynamic cell motility, and integral interaction with the microenvironment. We hypothesized that the heterogeneous nature of hepatocellular carcinoma (HCC) may be, in part, due to the presence of hepatic cancer cells with stem/progenitor features

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
    corecore