63 research outputs found
A multicenter randomized controlled trial to evaluate the efficacy and safety of nelfinavir in patients with mild COVID-19
Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms
LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance
Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance. © 2014 by the American Diabetes Association
Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver
Molecular Cloning, Structural Characterization, and Chromosomal Mapping of the Human LECT2 Gene
Poly(ADP-Ribose) Polymerase Inhibitors Suppress UV-Induced Human Immunodeficiency Virus Type 1 Gene Expression at the Posttranscriptional Level
Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway
Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2
Crystallization and preliminary X-ray analysis of human leukocyte cell-derived chemotaxin 2 (LECT2)
Human leukocyte cell-derived chemotaxin 2 (LECT2) is a chemotactic factor for neutrophils that plays multifunctional roles in liver regeneration, regulation of neuritic development and proliferation of chondrocytes and osteoblasts. In addition, the C-terminal region of LECT2 belongs to the zinc metalloendopeptidase M23 (PF01551) family. Purified LECT2 was crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of selenomethionine-substituted LECT2 that diffracted X-rays to 1.94 Å resolution were obtained using a reservoir solution consisting of 0.2 M ammonium sulfate, 0.1 M HEPES pH 7.5, 25%(w/v) PEG 8000. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 59.4, b = 63.5, c = 64.0 Å. The calculated Matthews coefficient (V (M) = 2.10 Å(3) Da(−1), solvent content 40%) indicates that the crystal consists of two molecules per asymmetric unit
Expression, high-pressure refolding and purification of human leukocyte cell-derived chemotaxin 2 (LECT2)
IL-10 promoter transactivation by the viral K-RTA protein involves the host-cell transcription factors, specificity proteins 1 and 3
- …
