48 research outputs found

    Nontuberculous mycobacterial disease following hot tub exposure.

    Get PDF
    Nontuberculous mycobacteria (NTM) have been recognized as an important cause of disease in immunocompromised hosts. Pulmonary disease caused by NTM is increasingly recognized in previously healthy persons. Investigation of pulmonary disease affecting a family of five identified an indoor hot tub as the source of NTM-related disease

    Abscesses due to mycobacterium abscessus linked to injection of unapproved alternative medication.

    Get PDF
    An unlicensed injectable medicine sold as adrenal cortex extract (ACE*) and distributed in the alternative medicine community led to the largest outbreak of Mycobacterium abscessus infections reported in the United States. Records from the implicated distributor from January 1, 1995, to August 18, 1996, were used to identify purchasers; purchasers and public health alerts were used to identify patients. Purchasers and patients were interviewed, and available medical records were reviewed. Vials of ACE* were tested for mycobacterial contamination, and the product was recalled by the U.S. Food and Drug Administration. ACE* had been distributed to 148 purchasers in 30 states; 87 persons with postinjection abscesses attributable to the product were identified. Patient and vial cultures contained M. abscessus identical by enzymatic and molecular typing methods. Unusual infectious agents and alternative health practices should be considered in the diagnosis of infections that do not respond to routine treatment

    Shared Mycobacterium avium Genotypes Observed among Unlinked Clinical and Environmental Isolates

    Get PDF
    Our understanding of the sources of Mycobacterium avium infection is partially based on genotypic matching of pathogen isolates from cases and environmental sources. These approaches assume that genotypic identity is rare in isolates from unlinked cases or sources. To test this assumption, a high-resolution PCR-based genotyping approach, large-sequence polymorphism (LSP)-mycobacterial interspersed repetitive unit–variable-number tandem repeat (MIRU-VNTR), was selected and used to analyze clinical and environmental isolates of M. avium from geographically diverse sources. Among 127 clinical isolates from seven locations in North America, South America, and Europe, 42 genotypes were observed. Among 12 of these genotypes, matches were seen in isolates from apparently unlinked patients in two or more geographic locations. Six of the 12 were also observed in environmental isolates. A subset of these isolates was further analyzed by alternative strain genotyping methods, pulsed-field gel electrophoresis and MIRU-VNTR, which confirmed the existence of geographically dispersed strain genotypes. These results suggest that caution should be exercised in interpreting high-resolution genotypic matches as evidence for an acquisition event

    Sequence Diversity in the Dickeya fliC Gene: Phylogeny of the Dickeya Genus and TaqMan® PCR for 'D. solani', New Biovar 3 Variant on Potato in Europe

    Get PDF
    Worldwide, Dickeya (formerly Erwinia chrysanthemi) is causing soft rot diseases on a large diversity of crops and ornamental plants. Strains affecting potato are mainly found in D. dadantii, D. dianthicola and D. zeae, which appear to have a marked geographical distribution. Furthermore, a few Dickeya isolates from potato are attributed to D. chrysanthemi and D. dieffenbachiae. In Europe, isolates of Erwinia chrysanthemi biovar 1 and biovar 7 from potato are now classified in D. dianthicola. However, in the past few years, a new Dickeya biovar 3 variant, tentatively named ‘Dickeya solani’, has emerged as a common major threat, in particular in seed potatoes. Sequences of a fliC gene fragment were used to generate a phylogeny of Dickeya reference strains from culture collections and with this reference backbone, to classify pectinolytic isolates, i.e. Dickeya spp. from potato and ornamental plants. The reference strains of the currently recognized Dickeya species and ‘D. solani’ were unambiguously delineated in the fliC phylogram. D. dadantii, D. dianthicola and ‘D. solani’ displayed unbranched clades, while D. chrysanthemi, D. zeae and D. dieffenbachiae branched into subclades and lineages. Moreover, Dickeya isolates from diagnostic samples, in particular biovar 3 isolates from greenhouse ornamentals, formed several new lineages. Most of these isolates were positioned between the clade of ‘D. solani’ and D. dadantii as transition variants. New lineages also appeared in D. dieffenbachiae and in D. zeae. The strains and isolates of D. dianthicola and ‘D. solani’ were differentiated by a fliC sequence useful for barcode identification. A fliC TaqMan®real-time PCR was developed for ‘D. solani’ and the assay was provisionally evaluated in direct analysis of diagnostic potato samples. This molecular tool can support the efforts to control this particular phytopathogen in seed potato certification

    Evaluation of a U.S. Public Health Laboratory Service for the Molecular Detection of Drug Resistant Tuberculosis

    No full text
    Crucial to interrupting the spread of tuberculosis (TB) is prompt implementation of effective treatment regimens. We evaluated satisfaction, comfort with interpretation, and use of molecular results from a public health service provided by the Centers for Disease Control and Prevention (CDC) for the molecular detection of drug resistant Mycobacterium tuberculosis complex (MTBC). An electronic survey instrument was used to collect information anonymously from U.S. Public Health Laboratories (PHL) that submitted at least one isolate of MTBC to CDC from September 2009 through February 2011. Over 97% of those responding expressed satisfaction with the turnaround time for receiving results. Twenty-six PHL (74%) reported molecular results to healthcare providers in less than two business days. When comparing the molecular results from CDC with their own phenotypic drug susceptibility testing, 50% of PHL observed discordance. No respondents found the molecular results difficult to interpret and 82% were comfortably discussing them with TB program officials and healthcare providers. Survey results indicate PHL were satisfied with CDC’s ability to rapidly provide interpretable molecular results for isolates of MTBC submitted for determination of drug resistance. To develop educational materials and strategies for service improvement, reasons for discordant results and areas of confusion need to be identified
    corecore