210 research outputs found

    Psychometric Properties of the Persian Version of Self-Management Scale for a Sample of Iranian Patients With Epilepsy

    Get PDF
    Background: Despite the importance of self-management in epileptics, no instrument has been developed or validated in Iran. Since self-management is a multi-dimensional construct, having a valid and reliable instrument for measuring this compound construct is crucial. Objectives: This study aims to validate the Persian version of the self-management scale and provide a valid and reliable tool to measure self-management of patients with epilepsy. Patients and Methods: This is a methodological psychometric study. Construct , face and content validity was calculated on 200 samples after translation. Tool reliability was examined by using two methods: internal consistency and test-retest. Finally, the modified model was presented using exploratory factor analysis for the Iranian version of the tool. Results: The validity of all items was above 0.63 and their content validity indexes (0.81-1) were appropriate. Construct validity, exploratory and confirmatory factor analysis confirmed all the dimensions except for some safety and pharmacotherapy items. The overall tool reliability with internal consistency had alpha of 0.77. Conclusions: Persian version of the self-management scale for patients with epilepsy is valid and reliable to measure the dimensions of self-management in Iranian patients and it can be used to measure epileptics’ self-management. Further research on the safety of this tool is recommended

    Echocardiography findings after intravenous injection of Achillea millefolium (Yarrow) extract in the dog

    Get PDF
    Achillea millefolium (yarrow) has been used for centuries as medicinal plant to treat different disorders in human and in traditional medicine to treat hypertension, diarrhea and shigellosis, heart failure, heart block and chest pain in thrombotic condition. There are no studies done on echocardiography in situ findings from intravenous injection Achillea millefolium extract in the dog. Therefore, a study was designed to evaluate echocardiography dynamics from intravenous injection of A. millefolium ethanolic leave extract in the male dog. This research was performed on 6 healthy male mongrel (breed) dogs in weight range of 15-30kg and age mean of 3 years. Echocardiography was performed before drug injection and then in times of 0, 60, 120 minutes after injection. Then left ventricular diameters in systole (LVDs), left ventricular diameters in diastole (LVDd), left ventricular septal thickness at end-systole (LVSs), left ventricular free wall systole (LVFWs), left ventricular free wall diastole (LVFWd), stroke volume (SV) and fractional shortening (FS) indices were measured. Mean and standard deviation was measured for each of indices in each period and were analyzed using paired t-test using SPSS as statistical software. SV, FS and EF indices before and 120 minutes after injection in 6 tested dogs showed significant difference statistically. This can be attributed to effect of alkaloids and unknown compounds available in A. millefolium on cardiovascular system which initially decreases blood pressure. Consequently, heart rate is increased to compensate blood pressure decreasing by activation of baroreflex and then stroke volume increases because of decreasing in afterload and increasing in preload. Antispasmoic property of compound presented in this plant decreases myocardium contraction power and in result heart fractional shortening is decreased

    Persuasive Discourse Impairments in Traumatic Brain Injury

    Get PDF
    Background: Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. Objectives: The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Patients and Methods: Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. Results: The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. Conclusions: As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI

    A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide @ iron oxide network for seawater splitting.

    Get PDF
    Here, a sol-gel method is used to prepare a Prussian blue analogue (NiFe-PBA) precursor with a 2D network, which is further annealed to an Fe3 O4 /NiCx composite (NiFe-PBA-gel-cal), inheriting the ultrahigh specific surface area of the parent structure. When the composite is used as both anode and cathode catalyst for overall water splitting, it requires low voltages of 1.57 and 1.66 V to provide a current density of 100 mA cm-2 in alkaline freshwater and simulated seawater, respectively, exhibiting no obvious attenuation over a 50 h test. Operando Raman spectroscopy and X-ray photoelectron spectroscopy indicate that NiOOH2-x active species containing high-valence Ni3+ /Ni4+ are in situ generated from NiCx during the water oxidation. Density functional theory calculations combined with ligand field theory reveal that the role of high valence states of Ni is to trigger the production of localized O 2p electron holes, acting as electrophilic centers for the activation of redox reactions for oxygen evolution reaction. After hydrogen evolution reaction, a series of ex situ and in situ investigations indicate the reduction from Fe3+ to Fe2+ and the evolution of Ni(OH)2 are the origin of the high activity

    Fluconazole resistance Candida albicans in females with recurrent vaginitis and Pir1 overexpression

    Get PDF
    Background: Some genes may be associated with Candida albicans resistance to azoles. Pir1 gene is described as responsible to induce resistance in C. albicans. Objectives: The current study aimed to find the relationship between fluconazole resistance and Pir1 protein (Pir1p) overexpression in the females with recurrent C. albicans vaginitis requiring longer fluconazole therapy. Patients and Methods: A total of 52l vaginal samples were obtained from the females with C. albicans vaginitis. The azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute (CLSI) protocol for disk diffusion method and inhibition zone for fluconazole. Expression of pir1 gene and fluconazole -resistance were evaluated using polymerase chain reaction (PCR) in C. albicans. Results: In the 52 isolates, 49 (94) were resistant to fluconazole. Overexpression of Pir1 gene was detected in 47 (96) fluconazole-resistant C. albicans isolates. Conclusions: The findings show fluconazole -resistance in C. albicans isolates with overexpression of Pir1p. © 2015, Ahvaz Jundishapur University of Medical Sciences

    Heterostructured core-Shell Ni-Co@Fe-Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater.

    Get PDF
    The rational construction of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) is critical to seawater electrolysis. Herein, trimetallic heterostructured core-shell nanoboxes based on Prussian blue analogues (Ni-Co@Fe-Co PBA) were synthesized using an iterative coprecipitation strategy. The same coprecipitation procedure was used for the preparation of the PBA core and shell, with the synthesis of the shell involving chemical etching during the introduction of ferrous ions. Due to its unique structure and composition, the optimized trimetallic Ni-Co@Fe-Co PBA possesses more active interfacial sites and a high specific surface area. As a result, the developed Ni-Co@Fe-Co PBA electrocatalyst exhibits remarkable electrocatalytic HER performance with small overpotentials of 43 and 183 mV to drive a current density of 10 mA cm-2 in alkaline freshwater and simulated seawater, respectively. Operando Raman spectroscopy demonstrates the evolution of Co2+ from Co3+ in the catalyst during HER. Density functional theory simulations reveal that the H*-N adsorption sites lower the barrier energy of the rate-limiting step, and the introduced Fe species improve the electron mobility of Ni-Co@Fe-Co PBA. The charge transfer at the core-shell interface leads to the generation of H* intermediates, thereby enhancing the HER activity. By pairing this HER catalyst (Ni-Co@Fe-Co PBA) with another core-shell PBA OER catalyst (NiCo@A-NiCo-PBA-AA) reported by our group, the fabricated two-electrode electrolyzer was found to achieve high output current densities of 44 and 30 mA cm-2 at a low voltage of 1.6 V in alkaline freshwater and simulated seawater, respectively, exhibiting remarkable durability over a 100 h test

    Investigation the Different Levels of Drought Stress on Almond Cultivars

    Get PDF
    Introduction  Water shortage is very frequent in many countries, and, together with the rising demand for industry, growth of human population, climate change and specifically the trend towards irrigated agriculture, has led to widespread problems of water scarcity, especially in Middle East countries. This situation imposes the need to optimize water use in all human activities. Among the different productive uses of water, agriculture is by far the main water user in most water scarce regions and, consequently, any potential improvement in the use of the available water resources may play a significant role toward achieving a more sustainable use of water. Plant responses to water deprivation are usually monitored through selected morphological and physiological parameters which have been proven to be good indicators of drought in different studies. Some of the most important standards for evaluating plant genotypes under drought stress are measurements of morphological parameters such as height, leaf characters and root growth.   Materials and Methods  To compare the growth response of different almond cultivars to different levels of water stress, an experiment was conducted as a split plot in the base of randomized complete block design with three replications in the Agricultural and Natural Resources Research Center of Chaharmahal and Bakhtiari Province in two growing season 2019-2020 and 2020-2021. Different irrigation periods based on the percentage of usable soil moisture between filed capacity to wilting point, including 70% filed capacity (control or no stress), 50% filed capacity (mild stress), 30% filed capacity (medium stress) and 10% of field capacity (severe stress) were considered as the main factor of the experiment. The sub-factor included 14 commercial cultivars of almonds (Mamaei, Rabi, Saba, Araz, Eskandar, Aidin, Shahrood 6, 7, 8, 10, 12, 13 and 21 and GN vegetative rootstock), all of which were grafted on GN rootstock. In this study, uniformly grafted seedlings in terms of age, stem diameter and height were selected and planted. In the second year after planting the seedlings, in order to apply drought stress, tubes for hygrometer (TDR) were installed in each experimental plot and based on soil moisture content, irrigation cycle was determined for different treatments.   Results and Discussion  In both years, three months after applied water stress growth traits and nutrient concentrations in the leaves of treated seedlings were measured. Based on the results of analysis of variance, the morphological traits of almond seedlings were significantly affected by cultivar type and drought stress level. In all almond cultivars, the highest height was belonged to seedlings that were grown in non-stress conditions and with increasing the drought stress intensity, the height of almond seedlings was decreased. Under severe drought stress, GN and Mamaei cultivars had the highest (183.93 cm) and the lowest (94.60 cm) height, respectively. Seedling height in GN, Shahrood 12, Saba and Shahrood 10 cultivars showed the lowest decrement under severe drought stress. In all cultivars, drought stress caused a significant reduction in the length and width of the seedlings crown, and the greatest decreasing was recorded in severe drought stress (10% FC). Under severe drought stress, cultivar GN had the largest crown and cultivars Rabi, Shahrood 7 and Eskandar had the smallest crown. Increasing the drought stress intensity significantly reduced the branches growth of seeding in terms of number and length of sub-branches. As the intensity of drought stress increased, the length of sub-branches decreased however the number of intermediates in sub-branches increased. In non-stressed condition, the cultivar GN had the longest branch (55.95 cm), which was significantly higher than the other studied almond cultivars. The shortest branches were also observed in Saba (29.94 cm) and Eskandar (29.47 cm) cultivars. Increasing drought stress caused a significant reduction of leaf area in all studied cultivars and the highest decreasing was observed under severe drought stress. The GN (37.76 cm²) and Shahrood 10 (31.81 cm²) had the highest leaf area in non-stress and drought stress conditions. Under severe drought stress (10% FC) cultivar Shahrood 6 showed the lowest leaf area. The results of this study showed that increasing the intensity of dehydration significantly reduced the amount of nitrogen, phosphorus, manganese and zinc in the leaves of the studied cultivars of almonds, however, the amount of potassium and iron in stressed plants increased under drought stress. Based on the results of the present study, under severe drought stress the GN, Shahrood 8 and Shahrood 12 cultivars in terms of growth indices including seedling height, stem diameter, canopy growth, branch growth and concentration of macro and micro elements was superior compared with the other studied cultivars.   Conclusion  Based on the results of this study, drought stress significantly reduced growth indices and nutrient concentrations, although the reaction of almond cultivars to different levels of drought stress was different. In this study, among the studied almond cultivars GN, Shahrood 8 and Shahrood 12 cultivars in terms of growth characters including seedling height, stem diameter, canopy growth, branch growth and concentration of macro and micro elements showed higher tolerance to different level of drought stress. These cultivars less affected by the high intensities of dehydration. Therefore, GN, Shahrood 8 and Shahrood 12 cultivars can be used in future studies to evaluate the possibility of cultivating these cultivars in areas with water deficit

    GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy

    Get PDF
    Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells
    corecore