627 research outputs found
Coherent Transport through a Quantum Dot Embedded in an Aharonov-Bohm Ring
We study the coherent transport in multi-terminal mesoscopic Aharonov-Bohm
ring with a quantum dot embedded in an arm. Employing the Friedel sum rule for
the effective single-particle levels in the quantum dot, we explain some
anomalous features which have been observed in the experiment. We attribute
these anomalies to the result of nontrivial quantum interference of the quantum
dot with the attached ring. Further, we propose a new feature of conductance
oscillations which can be a test for the validity of our model.Comment: 4 pages Revtex, 4 Postscript figures, accepted for publication in
Phys. Rev.
Inhomogeneous Nuclear Spin Flips
We discuss a feedback mechanism between electronic states in a double quantum
dot and the underlying nuclear spin bath. We analyze two pumping cycles for
which this feedback provides a force for the Overhauser fields of the two dots
to either equilibrate or diverge. Which of these effects is favored depends on
the g-factor and Overhauser coupling constant A of the material. The strength
of the effect increases with A/V_x, where V_x is the exchange matrix element,
and also increases as the external magnetic field B_{ext} decreases.Comment: 5 pages, 4 figures (jpg
Channel Interference in a Quasi Ballistic Aharonov-Bohm Experiment
New experiments are presented on the transmission of electron waves through a
2DEG (2 dimensional electron gas) ring with a gate on top of one of the
branches. Magnetoconductance oscillations are observed, and the phase of the
Aharanov-Bohm signal alternates between 0 and pi as the gate voltage is
scanned. A Fourier transform of the data reveals a dominant period in the
voltage which corresponds to the energy spacing between successive transverse
modes.A theoretical model including random phase shifts between successive
modes reproduces the essential features of the experiment.Comment: 4 pages, 6 Postscript figures, TEX, submitted to Physical Review
Letter
Charge and spin addition energies of one dimensional quantumn dot
We derive the effective action for a one dimensional electron island formed
between a double barrier in a single channel quantum wire including the
electron spin. Current and energy addition terms corresponding to charge and
spin are identified. The influence of the range and the strength of the
electron interaction and other system parameters on the charge and spin
addition energies, and on the excitation spectra of the modes confined within
the island is studied. We find by comparison with experiment that spin
excitations in addition to non-zero range of the interaction and inhomogeneity
effects are important for understanding the electron transport through one
dimensional quantum islands in cleaved-edge-overgrowth systems.Comment: 11 pages, 3 figures, to be published in Physical Review
Spatial structure of an incompressible Quantum Hall strip
The incompressible Quantum Hall strip is sensitive to charging of localized
states in the cyclotron gap. We study the effect of localized states by a
density functional approach and find electron density and the strip width as a
function of the density of states in the gap. Another important effect is
electron exchange. By using a model density functional which accounts for
negative compressibility of the QH state, we find electron density around the
strip. At large exchange, the density profile becomes nonmonotonic, indicating
formation of a 1D Wigner crystal at the strip edge. Both effects, localized
states and exchange, lead to a substantial increase of the strip width.Comment: 6 LaTeX pages, 2 postscript figures, to be published in EP2DS
proceeding
The microscopic nature of localization in the quantum Hall effect
The quantum Hall effect arises from the interplay between localized and
extended states that form when electrons, confined to two dimensions, are
subject to a perpendicular magnetic field. The effect involves exact
quantization of all the electronic transport properties due to particle
localization. In the conventional theory of the quantum Hall effect,
strong-field localization is associated with a single-particle drift motion of
electrons along contours of constant disorder potential. Transport experiments
that probe the extended states in the transition regions between quantum Hall
phases have been used to test both the theory and its implications for quantum
Hall phase transitions. Although several experiments on highly disordered
samples have affirmed the validity of the single-particle picture, other
experiments and some recent theories have found deviations from the predicted
universal behaviour. Here we use a scanning single-electron transistor to probe
the individual localized states, which we find to be strikingly different from
the predictions of single-particle theory. The states are mainly determined by
Coulomb interactions, and appear only when quantization of kinetic energy
limits the screening ability of electrons. We conclude that the quantum Hall
effect has a greater diversity of regimes and phase transitions than predicted
by the single-particle framework. Our experiments suggest a unified picture of
localization in which the single-particle model is valid only in the limit of
strong disorder
Experimental Evidence for Resonant-Tunneling in a Luttinger-Liquid
We have measured the low temperature conductance of a one-dimensional island
embedded in a single mode quantum wire. The quantum wire is fabricated using
the cleaved edge overgrowth technique and the tunneling is through a single
state of the island. Our results show that while the resonance line shape fits
the derivative of the Fermi function the intrinsic line width decreases in a
power law fashion as the temperature is reduced. This behavior agrees
quantitatively with Furusaki's model for resonant tunneling in a
Luttinger-liquid.Comment: 3 pages, 5 figures, corrected typo
Transmission Phase Shift of a Quantum Dot with Kondo Correlations
We study the effects of Kondo correlations on the transmission phase shift of
a quantum dot in an Aharonov-Bohm ring. We predict in detail how the
development of a Kondo resonance should affect the dependence of the phase
shift on transport voltage, gate voltage and temperature. This system should
allow the first direct observation of the well-known scattering phase shift of
pi/2 expected (but not directly measurable in bulk systems) at zero temperature
for an electron scattering off a spin-1/2 impurity that is screened into a
singlet.Comment: 4 pages Revtex, 4 figures, final published versio
- …
