1,226 research outputs found

    Stability analysis of a gyrotron backward-wave oscillator with an external injection signal

    Get PDF
    [[abstract]]Controlling the phase and frequency of a gyrotron backward-wave oscillator (gyro-BWO) by means of injection-locking techniques is of practical importance. Using a nonlinear self-consistent time-independent code, this paper analyzes the stability of a gyro-BWO with an external injection signal. To examine the stability of steady-state solutions, the perturbation of the phase difference between the oscillator and injected signal must decay in time. A nonlinear time-independent code is employed to study the properties of the injection-locking gyro-BWO, including the locking power, the phase difference between the oscillator and injected signal, and the locking bandwidth curve. The simulation results show that the dependence of the phase difference of stable solutions on the frequency is consistent with the theoretical prediction at the injection-locking regime. Furthermore, the simulated phase differences of all stable solutions correspond with restrictions between -90 degrees and 90 degrees. Comparing with the curve of the locking bandwidth obtained by Adler's equation, the simulated result is slightly asymmetrical due to the field concentration near beam entrance. Finally, an efficiency enhancement on the injection-locked gyro-BWO is found and will be discussed.[[fileno]]2010132010024[[department]]物理

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    Superaerophobic graphene nano-hills for direct hydrazine fuel cells

    Get PDF
    Hydrazine fuel-cell technology holds great promise for clean energy, not only because of the greater energy density of hydrazine compared to hydrogen but also due to its safer handling owing to its liquid state. However, current technologies involve the use of precious metals (such as platinum) for hydrazine oxidation, which hinders the further application of hydrazine fuel-cell technologies. In addition, little attention has been devoted to the management of gas, which tends to become stuck on the surface of the electrode, producing overall poor electrode efficiencies. In this study, we utilized a nano-hill morphology of vertical graphene, which efficiently resolves the issue of the accumulation of gas bubbles on the electrode surface by providing a nano-rough-edged surface that acts as a superaerophobic electrode. The growth of the vertical graphene nano-hills was achieved and optimized by a scalable plasma-enhanced chemical vapor deposition method. The resulting metal-free graphene-based electrode showed the lowest onset potential (-0.42 V vs saturated calomel electrode) and the highest current density of all the carbon-based materials reported previously for hydrazine oxidation

    Down-regulation of transcription elogation factor A (SII) like 4 (TCEAL4) in anaplastic thyroid cancer

    Get PDF
    BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies and appears to arise mainly from transformation of pre-existing differentiated thyroid cancer (DTC). However, the carcinogenic mechanism of anaplastic transformation remains unclear. Previously, we investigated specific genes related to ATC based on gene expression profiling using cDNA microarray analysis. One of these genes, transcription elongation factor A (SII)-like 4 (TCEAL4), encodes a member of the transcription elongation factor A (SII)-like gene family. The detailed function of TCEAL4 has not been described nor has any association between this gene and human cancers been reported previously. METHODS: To investigate the role of TCEAL4 in ATC carcinogenesis, we examined expression levels of TCEAL4 in ACLs as well as in other types of thyroid cancers and normal human tissue. RESULTS: Expression of TCEAL4 was down-regulated in all 11 ACLs as compared to either normal thyroid tissues or papillary and follicular thyroid cancerous tissues. TCEAL4 was expressed ubiquitously in all normal human tissues tested. CONCLUSION: To our knowledge, this is the first report of altered TCEAL4 expression in human cancers. We suggest that loss of TCEAL4 expression might be associated with development of ATC from DTC. Further functional studies are required

    An ongoing process: A qualitative study of how the alcohol-dependent free themselves of addiction through progressive abstinence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most people being treated for alcoholism are unable to successfully quit drinking within their treatment programs. In few cases do we know the full picture of how abstinence is achieved in Taiwan. We tracked processes of abstinence in alcohol-dependency disorders, based on study evidence and results. This research explores the process of recovery from the viewpoint of the alcohol-dependent.</p> <p>Methods</p> <p>Semi-structured interviews were conducted in two different settings, using purpose sampling, during 2003-2004. The data were analyzed using content analysis. Participants were 32 adults, purposefully selected from an Alcoholics Anonymous group and a psychiatric hospital in North Taiwan.</p> <p>Results</p> <p>We found that the abstinence process is an ongoing process, in which the alcohol-dependent free themselves of addiction progressively. This process never ends or resolves in complete recovery. We have identified three stages in the struggle against alcoholism: the Indulgence, Ambivalence and Attempt (IAA) cycle, in which the sufferer is trapped in a cycle of attempting to give up and failing; the Turning Point, in which a Personal Nadir is reached, and the Ongoing Process of abstinence, in which a constant effort is made to remain sober through willpower and with the help of support groups. We also discuss Influencing Factors that can derail abstinence attempts, pushing the sufferer back into the IAA cycle.</p> <p>Conclusion</p> <p>This study provides important points of reference for alcohol and drug service workers and community healthcare professionals in Taiwan, casting light on the abstinence process and providing a basis for intervention or rehabilitation services.</p

    Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers.</p> <p>Methods</p> <p>Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients.</p> <p>Results</p> <p>A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α <it>in vitro </it>was through a <it>ras</it>- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (<it>p </it>< 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (<it>p </it>< 0.01).</p> <p>Conclusions</p> <p>In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.</p

    An Antireflective Nanostructure Array Fabricated by Nanosilver Colloidal Lithography on a Silicon Substrate

    Get PDF
    An alternative method is presented for fabricating an antireflective nanostructure array using nanosilver colloidal lithography. Spin coating was used to produce the multilayered silver nanoparticles, which grew by self-assembly and were transformed into randomly distributed nanosilver islands through the thermodynamic action of dewetting and Oswald ripening. The average size and coverage rate of the islands increased with concentration in the range of 50–90 nm and 40–65%, respectively. The nanosilver islands were critically affected by concentration and spin speed. The effects of these two parameters were investigated, after etching and wet removal of nanosilver residues. The reflection nearly disappeared in the ultraviolet wavelength range and was 17% of the reflection of a bare silicon wafer in the visible range

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Catalyst preparation for CMOS-compatible silicon nanowire synthesis

    Get PDF
    Metallic contamination was key to the discovery of semiconductor nanowires, but today it stands in the way of their adoption by the semiconductor industry. This is because many of the metallic catalysts required for nanowire growth are not compatible with standard CMOS (complementary metal oxide semiconductor) fabrication processes. Nanowire synthesis with those metals which are CMOS compatible, such as aluminium and copper, necessitate temperatures higher than 450 C, which is the maximum temperature allowed in CMOS processing. Here, we demonstrate that the synthesis temperature of silicon nanowires using copper based catalysts is limited by catalyst preparation. We show that the appropriate catalyst can be produced by chemical means at temperatures as low as 400 C. This is achieved by oxidizing the catalyst precursor, contradicting the accepted wisdom that oxygen prevents metal-catalyzed nanowire growth. By simultaneously solving material compatibility and temperature issues, this catalyst synthesis could represent an important step towards real-world applications of semiconductor nanowires.Comment: Supplementary video can be downloaded on Nature Nanotechnology websit
    corecore