1,659 research outputs found

    Temporal and causal reasoning in deaf and hearing novice readers

    Get PDF
    Temporal and causal information in text are crucial in helping the reader form a coherent representation of a narrative. Deaf novice readers are generally poor at processing linguistic markers of causal/temporal information (i.e., connectives), but what is unclear is whether this is indicative of a more general deficit in reasoning about temporal/causal information. In Study 1, 10 deaf and 63 hearing children, matched for comprehension ability and age, were compared on a range of tasks tapping temporal/causal reasoning skills. In Study 2, 20 deaf and 32 hearing children, matched for age but not reading comprehension ability, were compared on revised versions of the tasks. The pattern of performance of the deaf was different from that of the hearing; they had difficulties when temporal and causal reasoning was text-based, but not when it was nonverbal, indicating that their global temporal/causal reasoning skills are comparable with those of their hearing counterparts

    A one-dimensional model for theoretical analysis of single molecule experiments

    Full text link
    In this paper we compare two polymer stretching experiments. The outcome of both experiments is a force-extension relation. We use a one-dimensional model to show that in general the two quantities are not equal. In certain limits, however, both force-extension relations coincide.Comment: 11 pages, 5 figure

    Chamber basis of the Orlik-Solomon algebra and Aomoto complex

    Full text link
    We introduce a basis of the Orlik-Solomon algebra labeled by chambers, so called chamber basis. We consider structure constants of the Orlik-Solomon algebra with respect to the chamber basis and prove that these structure constants recover D. Cohen's minimal complex from the Aomoto complex.Comment: 16 page

    Many-body Systems Interacting via a Two-body Random Ensemble (I): Angular Momentum distribution in the ground states

    Full text link
    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum ImaxI_{max} is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interactions is confirmed but it is noted that contribution to the total 0 g.s. probability beyond this chain may be more important for even fermions in a single-j shell. Preliminary results by taking a displaced two-body random ensemble are presented for the I g.s. probabilities.Comment: 39 pages and 8 figure

    The Influence of Word Characteristics on the Vocabulary of Children with Cochlear Implants

    Get PDF
    This is the author's accepted manuscript. The original publication is available at http://jdsde.oxfordjournals.org/search?fulltext=The+Influence+of+Word+Characteristics+on+the+Vocabulary+or+Children+With+Cochlear+Implants&submit=yes&x=9&y=4The goal of this study was to explore the effects of phonotactic probability, word length, word frequency, and neighborhood density on the words known by children with cochlear implants (CIs) varying in vocabulary outcomes in a retrospective analysis of a subset of data from a longitudinal study of hearing loss. Generalized linear mixed modeling was used to examine the effects of these word characteristics at three time points: pre-implant, post-implant, and longitudinal follow-up. Results showed a robust effect of neighborhood density across group and time, whereas the effect of frequency varied by time. Significant effects of phonotactic probability or word length were not detected. Taken together, these findings suggest that children with CIs may be able to use spoken language structure in a manner similar to their normal hearing counterparts, despite the differences in the quality of the input. The differences in the effects of phonotactic probability and word length imply a difficulty in initiating word learning and limited working memory ability in children with CIs

    Contraction of cross-linked actomyosin bundles

    Full text link
    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the time scale for contraction as a viscoelastic time tau, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time tau ~ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.Comment: To be published in Physical Biolog

    Colloidal particles at a nematic-isotropic interface: effects of confinement

    Full text link
    When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on a particle mass, size, and interface velocity~\cite{west.jl:2002}. If liquid crystal is sandwiched between two substrates, the interface takes a wedge-like shape, accommodating the interface-substrate contact angle and minimizing the director distortions on its nematic side. Correspondingly, particles move along complex trajectories: they are first captured by the interface and then `glide' towards its vertex point. Our experiments quantify this scenario, and numerical minimization of the Landau-de Gennes free energy allow for a qualitative description of the interfacial structure and the drag force.Comment: 7 pages, 9 figure
    • …
    corecore