7 research outputs found

    PKQuest: capillary permeability limitation and plasma protein binding – application to human inulin, dicloxacillin and ceftriaxone pharmacokinetics

    Get PDF
    BACKGROUND: It is generally assumed that the tissue exchange of antibiotics is flow limited (complete equilibration between the capillary and the tissue water). This assumption may not be valid if there is a large amount of plasma protein binding because the effective capillary permeability depends on the product of the intrinsic capillary permeability (PS) and the fraction of solute that is free in the blood (fw(B)). PKQuest, a new generic physiologically based pharmacokinetic software routine (PBPK), provides a novel approach to modeling capillary permeability in which the only adjustable parameter is the PS of muscle. METHODS: All the results were obtained by applying PKQuest to previously published human pharmacokinetic data. RESULTS: The PKQuest analysis suggests that the highly protein bound antibiotics dicloxacillin and ceftriaxone have a significant capillary permeability limitation. The human muscle capillary PS of inulin, dicloxacillin and ceftriaxone was 0.6, 13 and 6 ml/min/100 gm, respectively. The ceftriaxone protein binding is non-linear, saturating at high plasma concentrations. The experimental ceftriaxone data over a wide range of intravenous inputs (0.15 to 3 gms) was well described by PKQuest. PKQuest is the first PBPK that includes both permeability limitation and non-linear binding. CONCLUSIONS: Because of their high degree of plasma protein binding, dicloxacillin and ceftriaxone appear to have a diffusion limited exchange rate between the blood and tissue and are not flow limited as had been previously assumed. PKQuest and all the examples are freely available at

    The pharmacokinetics of the interstitial space in humans

    Get PDF
    BACKGROUND: The pharmacokinetics of extracellular solutes is determined by the blood-tissue exchange kinetics and the volume of distribution in the interstitial space in the different organs. This information can be used to develop a general physiologically based pharmacokinetic (PBPK) model applicable to most extracellular solutes. METHODS: The human pharmacokinetic literature was surveyed to tabulate the steady state and equilibrium volume of distribution of the solutes mannitol, EDTA, morphine-6-glucuronide, morphine-3-glucuronide, inulin and β-lactam antibiotics with a range of protein binding (amoxicillin, piperacillin, cefatrizine, ceforanide, flucloxacillin, dicloxacillin). A PBPK data set was developed for extracellular solutes based on the literature for interstitial organ volumes. The program PKQuest was used to generate the PBPK model predictions. The pharmacokinetics of the protein (albumin) bound β-lactam antibiotics were characterized by two parameters: 1) the free fraction of the solute in plasma; 2) the interstitial albumin concentration. A new approach to estimating the capillary permeability is described, based on the pharmacokinetics of the highly protein bound antibiotics. RESULTS: About 42% of the total body water is extracellular. There is a large variation in the organ distribution of this water – varying from about 13% of total tissue water for skeletal muscle, up to 70% for skin and connective tissue. The weakly bound antibiotics have flow limited capillary-tissue exchange kinetics. The highly protein bound antibiotics have a significant capillary permeability limitation. The experimental pharmacokinetics of the 11 solutes is well described using the new PBPK data set and PKQuest. CONCLUSIONS: Only one adjustable parameter (systemic clearance) is required to completely characterize the PBPK for these extracellular solutes. Knowledge of just this systemic clearance allows one to predict the complete time course of the absolute drug concentrations in the major organs. PKQuest is freely available

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    No full text
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z 0 bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle

    Optimum Design of Composite Structures: A Literature Survey (1969–2009)

    No full text
    corecore