6,539 research outputs found
Quantum Group Covariance and the Braided Structure of Deformed Oscillators
The connection between braided Hopf algebra structure and the quantum group
covariance of deformed oscillators is constructed explicitly. In this context
we provide deformations of the Hopf algebra of functions on SU(1,1). Quantum
subgroups and their representations are also discussed.Comment: 12 pages, to be published in JM
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
The origin of striations aligned along the local magnetic field direction in
the translucent envelope of the Taurus molecular cloud is examined with new
observations of 12CO and 13CO J=2-1 emission obtained with the 10~m
submillimeter telescope of the Arizona Radio Observatory. These data identify a
periodic pattern of excess blue and redshifted emission that is responsible for
the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to
J=1-0 line ratio are small and are not spatially correlated with the striation
locations. A medium comprised of unresolved CO emitting substructures (cells)
with a beam area filling factor less than unity at any velocity is required to
explain the average line ratios and brightness temperatures. We propose that
the striations result from the modulation of velocities and the beam filling
factor of the cells as a result of either the Kelvin-Helmholtz instability or
magnetosonic waves propagating through the envelope of the Taurus molecular
cloud. Both processes are likely common features in molecular clouds that are
sub-Alfvenic and may explain low column density, cirrus-like features similarly
aligned with the magnetic field observed throughout the interstellar medium in
far-infrared surveys of dust emission.Comment: 11 pages, 4 figures. Accepted for publication in MNRA
Design and Analysis of Shrouded Small-Scale Wind Turbine for Low Wind Speeds
This work presents design and analysis of a shrouded small scale wind turbine optimized for extremely low wind speeds. In-house FORTRAN code based on Glauert's method are used for preliminary design. QBlade and CFD are used for iterative optimization. Results show that power output can be increased 1.5-2.5 times by using shroud. Additionally, using shroud and optimizing for low wind speed solves starting problem that small scale wind turbines have considerably and increases sustainability of power production
Braided Oscillators
The braided Hopf algebra structure of the generalized oscillator is
investigated. Using the solutions two types of braided Fibonacci oscillators
are introduced. This leads to two types of braided Biedenharn-Macfarlane
oscillators.Comment: 12 pages, latex, some references added, published versio
Hot Electron Dynamics in Ultrafast Multilayer Epsilon-Near-Zero Metamaterial
Realizing remarkable tunability in optical properties without sacrificing
speed is critical to obtain all optical ultrafast devices. In this work, we
investigate the ultrafast temporal behavior of optically tunable
epsilon-near-zero (ENZ) metamaterials, operating in the visible spectral range.
To perform this the ultrafast dynamics of the hot electrons is acquired by
femtosecond pump-probe spectroscopy and studied based on two-temperature model
(2TM). We show that pumping with femtosecond pulses changes the effective
permittivity of the metamaterial more than 400 %. This significant modulation
is more pronounced in ENZ region and we confirm this by the 2TM. The realized
ultrafast modulation in effective permittivity, along with the ultrashort
relaxation time of 3.3 ps, opens a new avenue towards ultrafast photonic
applications.Comment: 5 figure
Bimodal Phase Diagram of the Superfluid Density in LaAlO3/SrTiO3 Revealed by an Interfacial Waveguide Resonator
We explore the superconducting phase diagram of the two-dimensional electron
system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the
cavity modes of a coplanar waveguide resonator fabricated in the interface
itself. We determine the phase diagram of the superconducting transition as a
function of temperature and electrostatic gating, finding that both the
superfluid density and the transition temperature follow a dome shape, but that
the two are not monotonically related. The ground state of this 2DES is
interpreted as a Josephson junction array, where a transition from long- to
short-range order occurs as a function of the electronic doping. The synergy
between correlated oxides and superconducting circuits is revealed to be a
promising route to investigate these exotic compounds, complementary to
standard magneto-transport measurements.Comment: 5 pages, 4 figures and 10 pages of supplementary materia
Effect of anisotropy and destructuration on behavior of Haarajoki test embankment
This paper investigates the influence of anisotropy and destructuration on the behavior of Haarajoki test embankment, which was built by the Finnish National Road Administration as a noise barrier in 1997 on a soft clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. The construction and consolidation of the embankment is analyzed with the finite-element method using three different constitutive models to represent the soft clay. Two recently proposed constitutive models, namely S-CLAY1 which accounts for initial and plastic strain induced anisotropy, and its extension, called S-CLAY1S which accounts, additionally, for interparticle bonding and degradation of bonds, were used in the analysis. For comparison, the problem is also analyzed with the isotropic modified cam clay model. The results of the numerical analyses are compared with the field measurements. The simulations reveal the influence that anisotropy and destructuration have on the behavior of an embankment on soft clay
- …