2,626 research outputs found

    Subset measurement selection for globally self-optimizing control of Tennessee Eastman process

    Get PDF
    The concept of globally optimal controlled variable selection has recently been proposed to improve self-optimizing control performance of traditional local approaches. However, the associated measurement subset selection problem has not be studied. In this paper, we consider the measurement subset selection problem for globally self-optimizing control (gSOC) of Tennessee Eastman (TE) process. The TE process contains substantial measurements and had been studied for SOC with controlled variables selected from individual measurements through exhaustive search. This process has been revisited with improved performance recently through a retrofit approach of gSOC. To extend the improvement further, the measurement subset selection problem for gSOC is considered in this work and solved through a modification of an existing partially bidirectional branch and bound (PB3) algorithm originally developed for local SOC. The modified PB3 algorithm efficiently identifies the best measurement candidates among the full set which obtains the globally minimal economic loss. Dynamic simulations are conducted to demonstrate the optimality of proposed results

    Retrofit self-optimizing control of Tennessee Eastman process

    Get PDF
    This paper considers near-optimal operation of the Tennessee Eastman (TE) process by using a retrofit self-optimizing control (SOC) approach. Motivated by the factor that most chemical plants in operation have already been equipped with a workable control system for regulatory control, we propose to improve the economic performance by controlling some self-optimizing controlled variables (CVs). Different from traditional SOC methods, the proposed retrofit SOC approach improves economic optimality of operation through newly added cascaded SOC loops, where carefully selected SOC CVs are maintained at constant by adjusting set-points of the existing regulatory control loops. To demonstrate the effectiveness of the retrofit SOC proposed, we adopted measurement combinations as the CVs for the TE process, so that the economic cost is further reduced comparing to existing studies where single measurements are controlled. The optimality of the designed control architecture is validated through both steady state analysis and dynamic simulations

    Quantum dense coding scheme via cavity decay

    Full text link
    We investigate a secure scheme for implementing quantum dense coding via cavity decay and liner optics devices. Our scheme combines two distinct advantages: atomic qubit sevres as stationary bit and photonic qubit as flying bit, thus it is suitable for long distant quantum communication.Comment: 5 pages, 2 figure. A revised version, accept for publication in Journal of Modern Optc

    Retrofit self-optimizing control: a step forward towards real implementation

    Get PDF
    After 15 year development, it is still hard to find any real application of the self-optimizing control (SOC) strategy, although it can achieve optimal or near optimal operation in industrial processes without repetitive realtime optimization. This is partially because of the misunderstanding that the SOC requires to completely reconfigure the entire control system which is generally unacceptable for most process plants in operation, even though the current one may not be optimal. To alleviate this situation, this paper proposes a retrofit SOC methodology aiming to improve the optimality of operation without change of existing control systems. In the new retrofitted SOC systems, the controlled variables (CVs) selected are kept at constant by adjusting setpoints of existing control loops, which therefore constitutes a two layer control architecture. CVs made from measurement combinations are determined to minimise the global average losses. A subset measurement selection problem for the global SOC is solved though a branch and bound algorithm. The standard testbed Tennessee Eastman (TE) process is studied with the proposed retrofit SOC methodology. The optimality of the new retrofit SOC architecture is validated by comparing two state of art control systems by Ricker and Larsson et al., through steady state analysis as well as dynamic simulations

    EUCLIA - Exploring the UV/optical continuum lag in active galactic nuclei. I. a model without light echoing

    Full text link
    The tight inter-band correlation and the lag-wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario, however, the implied inter-band lags are generally too small. Furthermore, it is challenged by new evidences, such as the X-ray reprocessing yields too much high frequency UV/optical variations as well as it fails to reproduce the observed timescale-dependent color variations among {\it Swift} lightcurves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local {\it independent} temperature fluctuations are subject to a speculated {\it common} large-scale temperature fluctuation, can intrinsically generate the tight inter-band correlation and lag across UV/optical, and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the {\it differential regression capability} of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as 15%\gtrsim 15\% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.Comment: 18 pages, 8 figures. ApJ accepted. Further comments are very welcome

    Fairness-Oriented User Scheduling for Bursty Downlink Transmission Using Multi-Agent Reinforcement Learning

    Get PDF
    In this work, we develop practical user scheduling algorithms for downlink bursty traffic with emphasis on user fairness. In contrast to the conventional scheduling algorithms that either equally divides the transmission time slots among users or maximizing some ratios without physcial meanings, we propose to use the 5%-tile user data rate (5TUDR) as the metric to evaluate user fairness. Since it is difficult to directly optimize 5TUDR, we first cast the problem into the stochastic game framework and subsequently propose a Multi-Agent Reinforcement Learning (MARL)-based algorithm to perform distributed optimization on the resource block group (RBG) allocation. Furthermore, each MARL agent is designed to take information measured by network counters from multiple network layers (e.g. Channel Quality Indicator, Buffer size) as the input states while the RBG allocation as action with a proposed reward function designed to maximize 5TUDR. Extensive simulation is performed to show that the proposed MARL-based scheduler can achieve fair scheduling while maintaining good average network throughput as compared to conventional schedulers.Comment: 30 pages, 13 figure

    Scheme for sharing classical information via tripartite entangled states

    Full text link
    We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state in analogy with the theory of sharing information among involved users.Comment: 4 pages, no figure. A complete rewrritten vession, accepted for publication in Chinese Physic

    (4-Bromo-2-{[2-(morpholin-4-yl)ethyl­imino]­meth­yl}phenolato)dioxido­vanadium(V)

    Get PDF
    In the title mononuclear dioxidovanadium(V) complex, [V(C13H16BrN2O2)O2], the VV atom is five-coordinated by one phenolate O, one imine N and one morpholine N atom of the Schiff base ligand, and by two oxide O atoms, forming a distorted square-pyramidal geometry. In the crystal, weak C—H⋯O inter­actions and a short Br⋯Br contact [3.4597 (12) Å] are observed
    corecore