2,300 research outputs found
Local noise can enhance entanglement teleportation
Recently we have considered two-qubit teleportation via mixed states of four
qubits and defined the generalized singlet fraction. For single-qubit
teleportation, Badziag {\em et al.} [Phys. Rev. A {\bf 62}, 012311 (2000)] and
Bandyopadhyay [Phys. Rev. A {\bf 65}, 022302 (2002)] have obtained a family of
entangled two-qubit mixed states whose teleportation fidelity can be enhanced
by subjecting one of the qubits to dissipative interaction with the environment
via an amplitude damping channel. Here, we show that a dissipative interaction
with the local environment via a pair of time-correlated amplitude damping
channels can enhance fidelity of entanglement teleportation for a class of
entangled four-qubit mixed states. Interestingly, we find that this enhancement
corresponds to an enhancement in the quantum discord for some states.Comment: 10 page
Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump
The discovery of topological states of matter has profoundly augmented our
understanding of phase transitions in physical systems. Instead of local order
parameters, topological phases are described by global topological invariants
and are therefore robust against perturbations. A prominent example thereof is
the two-dimensional integer quantum Hall effect. It is characterized by the
first Chern number which manifests in the quantized Hall response induced by an
external electric field. Generalizing the quantum Hall effect to
four-dimensional systems leads to the appearance of a novel non-linear Hall
response that is quantized as well, but described by a 4D topological invariant
- the second Chern number. Here, we report on the first observation of a bulk
response with intrinsic 4D topology and the measurement of the associated
second Chern number. By implementing a 2D topological charge pump with
ultracold bosonic atoms in an angled optical superlattice, we realize a
dynamical version of the 4D integer quantum Hall effect. Using a small atom
cloud as a local probe, we fully characterize the non-linear response of the
system by in-situ imaging and site-resolved band mapping. Our findings pave the
way to experimentally probe higher-dimensional quantum Hall systems, where new
topological phases with exotic excitations are predicted
Experimental Measurement of the Berry Curvature from Anomalous Transport
Geometrical properties of energy bands underlie fascinating phenomena in a
wide-range of systems, including solid-state materials, ultracold gases and
photonics. Most famously, local geometrical characteristics like the Berry
curvature can be related to global topological invariants such as those
classifying quantum Hall states or topological insulators. Regardless of the
band topology, however, any non-zero Berry curvature can have important
consequences, such as in the semi-classical evolution of a wave packet. Here,
we experimentally demonstrate for the first time that wave packet dynamics can
be used to directly map out the Berry curvature. To this end, we use optical
pulses in two coupled fibre loops to study the discrete time-evolution of a
wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads
to an anomalous displacement of the wave packet under pumping. This is both the
first direct observation of Berry curvature effects in an optical system, and,
more generally, the proof-of-principle demonstration that semi-classical
dynamics can serve as a high-resolution tool for mapping out geometrical
properties
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Operator entanglement of two-qubit joint unitary operations is revisited.
Schmidt number is an important attribute of a two-qubit unitary operation, and
may have connection with the entanglement measure of the unitary operator. We
found the entanglement measure of two-qubit unitary operators is classified by
the Schmidt number of the unitary operators. The exact relation between the
operator entanglement and the parameters of the unitary operator is clarified
too.Comment: To appear in the Brazilian Journal of Physic
Probing many-body interactions in an optical lattice clock
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA (^87)Sr and NIST (^171)Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems
Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics
The simulation of low-temperature properties of many-body systems remains one
of the major challenges in theoretical and experimental quantum information
science. We present, and demonstrate experimentally, a universal cooling method
which is applicable to any physical system that can be simulated by a quantum
computer. This method allows us to distill and eliminate hot components of
quantum states, i.e., a quantum Maxwell's demon. The experimental
implementation is realized with a quantum-optical network, and the results are
in full agreement with theoretical predictions (with fidelity higher than
0.978). These results open a new path for simulating low-temperature properties
of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo
Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA.
Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs were studied. Separate groups of 12 animals were killed at age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids.
Results: Severity of OA increased progressively in guinea pigs with age. Glycated, oxidized, and nitrated amino acids were increased markedly at week 36, with glucosepane and dityrosine increasing progressively from weeks 20 and 28, respectively. Glucosepane correlated positively with OA histological severity (r = 0.58, p < 0.0001) and instantaneous modulus (r = 0.52–0.56; p < 0.0001), oxidation free adducts correlated positively with OA severity (p < 0.0009–0.0062), and hydroxyproline correlated positively with cartilage thickness (p < 0.0003–0.003). Interleukin-1β increased the release of glycated and nitrated amino acids from chondrocytes in vitro. In clinical translation, plasma glucosepane was increased 38% in early-stage OA (p < 0.05) and sixfold in patients with advanced OA (p < 0.001) compared with healthy controls.
Conclusions: These studies further advance the prospective role of glycated, oxidized, and nitrated amino acids as serum biomarkers in diagnostic algorithms for early-stage detection of OA and other arthritic disease. Plasma glucosepane, reported here for the first time to our knowledge, may improve early-stage diagnosis and progression of clinical OA
Minimal Model Holography
We review the duality relating 2d W_N minimal model CFTs, in a large N 't
Hooft like limit, to higher spin gravitational theories on AdS_3.Comment: 54 pages, 1 figure; Contribution to J. Phys. A special volume on
"Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasiliev.
v2. minor change
C–H insertion as a key step to spiro-oxetanes, scaffolds for drug discovery
A new route to spiro-oxetanes, potential scaffolds for drug discovery, is described. The route is based on the selective 1,4-C–H insertion reactions of metallocarbenes, generated from simple carbonyl precursors in flow or batch mode, to give spiro-β-lactones that are rapidly converted into spiro-oxetanes. The three-dimensional and lead like-properties of spiro-oxetanes is illustrated by the conversion of the 1-oxa-7-azaspiro[3,5]nonane scaffold into a range of functionalized derivatives
- …